Di Huang , Jinyu Zhang , Zhiyuan Liu , Ronghui Liu
{"title":"Prescriptive analytics for freeway traffic state estimation by multi-source data fusion","authors":"Di Huang , Jinyu Zhang , Zhiyuan Liu , Ronghui Liu","doi":"10.1016/j.tre.2025.104105","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of freeway traffic state estimation, this study introduces prescriptive analytics—also known as “predict-then-optimize”—for integrating data from Electronic Toll Collection (ETC) systems and traffic sensors. Traditional single-method data fusion techniques are constrained by inherent limitations. For instance, optimization-based methods are generally predicated on prior assumptions that may induce systematic biases, whereas machine learning approaches are frequently criticized for their lack of interpretability and their inability to elucidate underlying traffic mechanisms. To address these limitations, a novel “retrieval and matching” algorithm is proposed that integrates machine learning with optimization. First, the concept of the “state gene” is introduced to encapsulate traffic structural knowledge representing frequently occurring traffic patterns. In the retrieval phase, a heterogeneous graph conventional network is employed to predict potential state genes for a given scenario. In the matching phase, the predicted state genes are utilized to minimize the discrepancy with the current traffic state. This integration not only enhances the interpretability of the estimation process but also endows the optimization component with reverse inference capability through the incorporation of machine learning. Validation using real-world data from the G92 Freeway in Zhejiang, China, demonstrates high accuracy, yielding Mean Absolute Percentage Errors (MAPE) of 1.12 − 1.65 % during peak periods and 1.28 − 1.67 % during off-peak periods.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"198 ","pages":"Article 104105"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525001462","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of freeway traffic state estimation, this study introduces prescriptive analytics—also known as “predict-then-optimize”—for integrating data from Electronic Toll Collection (ETC) systems and traffic sensors. Traditional single-method data fusion techniques are constrained by inherent limitations. For instance, optimization-based methods are generally predicated on prior assumptions that may induce systematic biases, whereas machine learning approaches are frequently criticized for their lack of interpretability and their inability to elucidate underlying traffic mechanisms. To address these limitations, a novel “retrieval and matching” algorithm is proposed that integrates machine learning with optimization. First, the concept of the “state gene” is introduced to encapsulate traffic structural knowledge representing frequently occurring traffic patterns. In the retrieval phase, a heterogeneous graph conventional network is employed to predict potential state genes for a given scenario. In the matching phase, the predicted state genes are utilized to minimize the discrepancy with the current traffic state. This integration not only enhances the interpretability of the estimation process but also endows the optimization component with reverse inference capability through the incorporation of machine learning. Validation using real-world data from the G92 Freeway in Zhejiang, China, demonstrates high accuracy, yielding Mean Absolute Percentage Errors (MAPE) of 1.12 − 1.65 % during peak periods and 1.28 − 1.67 % during off-peak periods.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.