Enhancing lutein concentration in an indigenous microalgal strain through salinity, light intensity and nutrient concentrations and evaluation of its anticancer potential
IF 4.6 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Enhancing lutein concentration in an indigenous microalgal strain through salinity, light intensity and nutrient concentrations and evaluation of its anticancer potential","authors":"Arima Marchese , Serena Lima , Valeria Villanova , Eleonora Montuori , Daniele De Luca , Chiara Lauritano , Francesca Scargiali","doi":"10.1016/j.algal.2025.104054","DOIUrl":null,"url":null,"abstract":"<div><div>The search for new approaches for treating cancer is an urgent need and microalgae have recently shown to be an underestimated source of biocompounds. In this work, the anticancer potential of an indigenous <em>Chlorella-</em>like microalgal strain was investigated by optimizing its lutein content using a Design of Experiment (DoE) approach. Several parameters were assessed such as NaCl, phosphate and nitrate concentration in combination with light intensity. Sodium chloride and nitrate concentrations showed antagonist effects on lutein accumulation. The crude methanolic extracts of the obtained microalgal cultures, containing 2.15 ± 0.12, 1.70 ± 0.17 and of 0.68 ± 0.09 μg mg<sup>−1</sup> of lutein, were tested on cancer cell lines, revealing a dosage-dependent antiproliferative effect on melanoma A2058 cells. The extracts' fractions containing lutein exhibited similar effects, likely due to a concerted action of multiple substances, with lutein being one of the main contributors. The described approach, which combined bioprocess optimization and assessment of anticancer proprieties, showed a significant potential in the discovery of new bioactives for pharmaceutics.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"89 ","pages":"Article 104054"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425001638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The search for new approaches for treating cancer is an urgent need and microalgae have recently shown to be an underestimated source of biocompounds. In this work, the anticancer potential of an indigenous Chlorella-like microalgal strain was investigated by optimizing its lutein content using a Design of Experiment (DoE) approach. Several parameters were assessed such as NaCl, phosphate and nitrate concentration in combination with light intensity. Sodium chloride and nitrate concentrations showed antagonist effects on lutein accumulation. The crude methanolic extracts of the obtained microalgal cultures, containing 2.15 ± 0.12, 1.70 ± 0.17 and of 0.68 ± 0.09 μg mg−1 of lutein, were tested on cancer cell lines, revealing a dosage-dependent antiproliferative effect on melanoma A2058 cells. The extracts' fractions containing lutein exhibited similar effects, likely due to a concerted action of multiple substances, with lutein being one of the main contributors. The described approach, which combined bioprocess optimization and assessment of anticancer proprieties, showed a significant potential in the discovery of new bioactives for pharmaceutics.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment