{"title":"Identifying total causal effects in linear models under partial homoscedasticity","authors":"David Strieder, Mathias Drton","doi":"10.1016/j.ijar.2025.109455","DOIUrl":null,"url":null,"abstract":"<div><div>A fundamental challenge of scientific research is inferring causal relations based on observed data. One commonly used approach involves utilizing structural causal models that postulate noisy functional relations among interacting variables. A directed graph naturally represents these models and reflects the underlying causal structure. However, classical identifiability results suggest that, without conducting additional experiments, this causal graph can only be identified up to a Markov equivalence class of indistinguishable models. Recent research has shown that focusing on linear relations with equal error variances can enable the identification of the causal structure from mere observational data. Nonetheless, practitioners are often primarily interested in the effects of specific interventions, rendering the complete identification of the causal structure unnecessary. In this work, we investigate the extent to which less restrictive assumptions of partial homoscedasticity are sufficient for identifying the causal effects of interest. Furthermore, we construct mathematically rigorous confidence regions for total causal effects under structure uncertainty and explore the performance gain of relying on stricter error assumptions in a simulation study.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"183 ","pages":"Article 109455"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000969","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A fundamental challenge of scientific research is inferring causal relations based on observed data. One commonly used approach involves utilizing structural causal models that postulate noisy functional relations among interacting variables. A directed graph naturally represents these models and reflects the underlying causal structure. However, classical identifiability results suggest that, without conducting additional experiments, this causal graph can only be identified up to a Markov equivalence class of indistinguishable models. Recent research has shown that focusing on linear relations with equal error variances can enable the identification of the causal structure from mere observational data. Nonetheless, practitioners are often primarily interested in the effects of specific interventions, rendering the complete identification of the causal structure unnecessary. In this work, we investigate the extent to which less restrictive assumptions of partial homoscedasticity are sufficient for identifying the causal effects of interest. Furthermore, we construct mathematically rigorous confidence regions for total causal effects under structure uncertainty and explore the performance gain of relying on stricter error assumptions in a simulation study.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.