{"title":"Some results on the saturation number of graphs","authors":"Jinze Hu , Shengjin Ji , Chenke Zhang","doi":"10.1016/j.dam.2025.04.038","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <span><math><mi>F</mi></math></span>, we say a (connected) graph <span><math><mi>G</mi></math></span> is (connected) <span><math><mi>F</mi></math></span>-saturated if <span><math><mi>G</mi></math></span> is <span><math><mi>F</mi></math></span>-free, and for any <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>+</mo><mi>e</mi></mrow></math></span> creates an <span><math><mi>F</mi></math></span>-copy. The (connected) saturation number is the minimum number of edges of a (connected) <span><math><mi>F</mi></math></span>-saturated graph with <span><math><mi>n</mi></math></span> vertices. We denote the saturation number and the connected saturation number by <span><math><mrow><mi>s</mi><mi>a</mi><mi>t</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>s</mi><mi>a</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, respectively. Evidently, <span><math><mrow><mi>s</mi><mi>a</mi><mi>t</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><mi>s</mi><mi>a</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. A generalized friendship graph is regarded as the join of a clique and the union of some disjoint cliques. In this paper, we show the relationship of the saturation numbers between the unions of disjoint cliques and generalized friendship graphs, and as its application, obtain the saturation numbers of some generalized friendship graphs. And then we propose respectively two sufficient conditions for <span><math><mrow><mi>s</mi><mi>a</mi><mi>t</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mi>s</mi><mi>a</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>s</mi><mi>a</mi><mi>t</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo><</mo><mi>s</mi><mi>a</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. In addition, we show <span><math><mrow><mi>s</mi><mi>a</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>+</mo><mn>2</mn></mrow></math></span> for sufficiently large <span><math><mi>n</mi></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>. Furthermore, we obtain an upper bound of the saturation number of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 188-196"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002136","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a given graph , we say a (connected) graph is (connected) -saturated if is -free, and for any , creates an -copy. The (connected) saturation number is the minimum number of edges of a (connected) -saturated graph with vertices. We denote the saturation number and the connected saturation number by and , respectively. Evidently, . A generalized friendship graph is regarded as the join of a clique and the union of some disjoint cliques. In this paper, we show the relationship of the saturation numbers between the unions of disjoint cliques and generalized friendship graphs, and as its application, obtain the saturation numbers of some generalized friendship graphs. And then we propose respectively two sufficient conditions for and . In addition, we show for sufficiently large and . Furthermore, we obtain an upper bound of the saturation number of for .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.