Enhancing thermo-hydraulic performance in flow boiling with hybrid nanofluids in double-layered wavy microchannel heat sink

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Santanu Borah, Dipankar Bhanja
{"title":"Enhancing thermo-hydraulic performance in flow boiling with hybrid nanofluids in double-layered wavy microchannel heat sink","authors":"Santanu Borah,&nbsp;Dipankar Bhanja","doi":"10.1016/j.applthermaleng.2025.126488","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses water-based nanofluids to investigate the thermo-hydraulic performance of flow boiling in single-layer and double-layer wavy microchannels. A numerical analysis employing the Volume of Fluid-Discrete Phase Model (VOF-DPM) evaluates mono nanofluids (Al<sub>2</sub>O<sub>3</sub>, MWCNT, CuO, SiO<sub>2</sub>, TiO<sub>2</sub>) and hybrid nanofluids (MWCNT-TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>-CuO, SiO<sub>2</sub>-CuO, MWCNT-Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>-TiO<sub>2</sub>) across varying concentrations. Results identify 2 % nanoparticle concentration as optimal, with performance degradation at higher levels due to increased viscosity and nanoparticle agglomeration. MWCNT and MWCNT-TiO<sub>2</sub> hybrid nanofluids demonstrate superior heat transfer performance among the tested fluids. The double-layer microchannel configuration significantly enhances heat transfer, reduces hotspots, and ensures uniform heat distribution compared to single-layer designs. An optimal MWCNT: TiO<sub>2</sub> ratio of 1.5:0.5 achieves the highest Nusselt number and performance factor, leveraging the thermal conductivity of MWCNT and the wettability of TiO<sub>2</sub>. Geometric parameters such as wavelength and amplitude further influence performance, with larger wavelengths and moderate amplitudes striking a balance between heat transfer and frictional losses. This work establishes double-layer wavy microchannels with MWCNT-TiO<sub>2</sub> hybrid nanofluids as a promising solution for advanced thermal management applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"273 ","pages":"Article 126488"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125010804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses water-based nanofluids to investigate the thermo-hydraulic performance of flow boiling in single-layer and double-layer wavy microchannels. A numerical analysis employing the Volume of Fluid-Discrete Phase Model (VOF-DPM) evaluates mono nanofluids (Al2O3, MWCNT, CuO, SiO2, TiO2) and hybrid nanofluids (MWCNT-TiO2, Al2O3-CuO, SiO2-CuO, MWCNT-Al2O3, SiO2-TiO2) across varying concentrations. Results identify 2 % nanoparticle concentration as optimal, with performance degradation at higher levels due to increased viscosity and nanoparticle agglomeration. MWCNT and MWCNT-TiO2 hybrid nanofluids demonstrate superior heat transfer performance among the tested fluids. The double-layer microchannel configuration significantly enhances heat transfer, reduces hotspots, and ensures uniform heat distribution compared to single-layer designs. An optimal MWCNT: TiO2 ratio of 1.5:0.5 achieves the highest Nusselt number and performance factor, leveraging the thermal conductivity of MWCNT and the wettability of TiO2. Geometric parameters such as wavelength and amplitude further influence performance, with larger wavelengths and moderate amplitudes striking a balance between heat transfer and frictional losses. This work establishes double-layer wavy microchannels with MWCNT-TiO2 hybrid nanofluids as a promising solution for advanced thermal management applications.
双层波状微通道热沉中混合纳米流体流动沸腾热水力性能的提高
利用水基纳米流体研究了单层和双层波浪状微通道中流动沸腾的热水力性能。采用流体离散相体积模型(VOF-DPM)的数值分析评估了不同浓度的单纳米流体(Al2O3, MWCNT, CuO, SiO2, TiO2)和混合纳米流体(MWCNT-TiO2, Al2O3-CuO, SiO2-CuO, MWCNT-Al2O3, SiO2-TiO2)。结果表明,纳米颗粒浓度为2%为最佳,由于粘度增加和纳米颗粒团聚,性能会下降。MWCNT和MWCNT- tio2混合纳米流体在测试流体中表现出优异的传热性能。与单层设计相比,双层微通道配置显着增强了传热,减少了热点,并确保了均匀的热量分布。利用MWCNT的导热性和TiO2的润湿性,MWCNT: TiO2的最佳比例为1.5:0.5,可获得最高的努塞尔数和性能因子。波长和振幅等几何参数进一步影响性能,较大的波长和中等的振幅在传热和摩擦损失之间取得平衡。这项工作建立了MWCNT-TiO2混合纳米流体的双层波浪形微通道,作为先进热管理应用的有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信