Evaluating heat transfer and pressure drop in circular multiple impingement jets using hybrid nanofluids

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Raheem K. Ajeel , Saba N. Fayyadh , Hayder Kareem Talla , Sakhr M. Sultan , C.P. Tso
{"title":"Evaluating heat transfer and pressure drop in circular multiple impingement jets using hybrid nanofluids","authors":"Raheem K. Ajeel ,&nbsp;Saba N. Fayyadh ,&nbsp;Hayder Kareem Talla ,&nbsp;Sakhr M. Sultan ,&nbsp;C.P. Tso","doi":"10.1016/j.asej.2025.103413","DOIUrl":null,"url":null,"abstract":"<div><div>Utilisation of multiple impingement jet cooling structures is a prevalent practise in various industrial applications, including gas turbine engines, with the primary objective of augmenting heat transfer. The numerical procedure entails using Computational Fluid Dynamics (CFD) techniques to simulate the flow and heat transfer characteristics within the impingement region. The governing equations for fluid flow and the heat transfer are discretized using finite volume method on a structured grid. The turbulence effects were represented using SST k-omega model. Al<sub>2</sub>O<sub>3-</sub>Cu / water with different volume fractions (<span><math><msub><mi>φ</mi><mrow><mi>hnf</mi></mrow></msub></math></span>) such as 0.1 %, 0.33 %, 0.75 %, and 1.0 % are employed as a working fluid. The purpose of the study is to clarify the impact of the jet angle (β), the jet Reynolds number (Re), extended jet height <span><math><msub><mrow><mo>(</mo><mi>E</mi></mrow><mi>j</mi></msub></math></span>), and different volume fraction (<span><math><msub><mi>φ</mi><mrow><mi>hnf</mi></mrow></msub></math></span>) on the heat transfer behaviours of the curved target surface. The jet Reynolds number varies from 8,000 to 24,000, and five different jet angles (β = 15 <span><math><msup><mrow><mspace></mspace></mrow><mo>°</mo></msup></math></span>, 30°, 45°, 60°, 90 <span><math><msup><mrow><mspace></mspace></mrow><mo>°</mo></msup></math></span>) and three extended jet heights<span><math><msub><mrow><mo>(</mo><mi>E</mi></mrow><mi>j</mi></msub></math></span> = 0.2H, 0.4H, and 0.6H) are adopted. Within the range of studied parameters, the maximum Nusselt number occurs at the highest value of <span><math><msub><mi>φ</mi><mrow><mi>hnf</mi></mrow></msub></math></span> at all values of Re. The heat transfer rate and pressure drop of the system are enhanced significantly by the highest values of Re and <span><math><msub><mi>φ</mi><mrow><mi>hnf</mi></mrow></msub></math></span>. For all jet angle and Reynolds number, the heat transfer rate of binary hybrid nanofluids improve with the increase of volume fraction. The angle of jet, 45°, in this study gives a higher Nusselt number than other jet angles and the maximum is 29 %. Placing axial jet at a height less than maximum Nusselt number of a 90° extended jet will enhance heat transfer rate in comparison with other methods, while simultaneously, increases pressure drop.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 7","pages":"Article 103413"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925001546","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilisation of multiple impingement jet cooling structures is a prevalent practise in various industrial applications, including gas turbine engines, with the primary objective of augmenting heat transfer. The numerical procedure entails using Computational Fluid Dynamics (CFD) techniques to simulate the flow and heat transfer characteristics within the impingement region. The governing equations for fluid flow and the heat transfer are discretized using finite volume method on a structured grid. The turbulence effects were represented using SST k-omega model. Al2O3-Cu / water with different volume fractions (φhnf) such as 0.1 %, 0.33 %, 0.75 %, and 1.0 % are employed as a working fluid. The purpose of the study is to clarify the impact of the jet angle (β), the jet Reynolds number (Re), extended jet height (Ej), and different volume fraction (φhnf) on the heat transfer behaviours of the curved target surface. The jet Reynolds number varies from 8,000 to 24,000, and five different jet angles (β = 15 °, 30°, 45°, 60°, 90 °) and three extended jet heights(Ej = 0.2H, 0.4H, and 0.6H) are adopted. Within the range of studied parameters, the maximum Nusselt number occurs at the highest value of φhnf at all values of Re. The heat transfer rate and pressure drop of the system are enhanced significantly by the highest values of Re and φhnf. For all jet angle and Reynolds number, the heat transfer rate of binary hybrid nanofluids improve with the increase of volume fraction. The angle of jet, 45°, in this study gives a higher Nusselt number than other jet angles and the maximum is 29 %. Placing axial jet at a height less than maximum Nusselt number of a 90° extended jet will enhance heat transfer rate in comparison with other methods, while simultaneously, increases pressure drop.
利用混合纳米流体评估圆形多重撞击射流的传热和压降
在包括燃气涡轮发动机在内的各种工业应用中,利用多重撞击射流冷却结构是一种普遍的做法,其主要目的是增加传热。数值计算过程需要使用计算流体动力学(CFD)技术来模拟撞击区域内的流动和传热特性。采用有限体积法在结构网格上离散了流体流动和传热的控制方程。湍流效应用SST k-omega模型表示。采用体积分数(φhnf)分别为0.1%、0.33%、0.75%和1.0%的Al2O3-Cu /水作为工质。研究的目的是阐明射流角(β)、射流雷诺数(Re)、扩展射流高度(Ej)和不同体积分数(φhnf)对弯曲靶表面传热行为的影响。射流雷诺数在8000 ~ 24000之间,采用5种不同的射流角度(β = 15°、30°、45°、60°、90°)和3种扩展射流高度(Ej = 0.2H、0.4H、0.6H)。在研究参数范围内,在所有Re值下,Nusselt数均出现在φhnf值的最大值处。Re值和φhnf值的最大值显著提高了系统的换热率和压降。在所有射流角度和雷诺数下,二元混合纳米流体的换热率随体积分数的增加而提高。在本研究中,45°射流角的努塞尔数比其他射流角的努塞尔数高,最大值为29%。与其他方法相比,将轴向射流放置在小于90°扩展射流最大努塞尔数的高度将提高换热率,同时增加压降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信