{"title":"Monocatechol metabolites of sesamin and episesamin promote higher autophagy flux compared to their unmetabolized forms by mTORC1-selective inhibition","authors":"Jiro Takano , Daisuke Takemoto , Hisashi Tatebe , Shisako Shoji , Kanako Fukuda , Yoshinori Kitagawa , Tomohiro Rogi , Takayuki Izumo , Yoshihiro Nakao , Miwako Ishido , Tamotsu Yoshimori","doi":"10.1016/j.bbrc.2025.151816","DOIUrl":null,"url":null,"abstract":"<div><div>Sesamin and episesamin, the major lignans found in refined sesame oil, reportedly exert antioxidant, anti-inflammatory, and hypocholesterolemic effects. Sesamin has also been suggested by previous studies to promote autophagy; however, concerns have been raised regarding the use of non-physiological concentrations, inaccurate methods for evaluating autophagic activity, and incomplete understanding of underlying mechanisms. Additionally, the effects of its metabolic kinetics on autophagy remain unclear. In this study, we demonstrated that sesamin, episesamin, and their metabolites induced autophagy flux at physiological concentrations in human cell cultures expressing monomeric red fluorescent protein-green fluorescent protein tandem fluorescent-tagged microtubule-associated protein 1A/1B-light-chain 3 proteins, a robust method for monitoring autophagy flux. Notably, the monocatechol metabolites of sesamin and episesamin exhibited higher autophagy flux than their unmetabolized forms. Immunoblotting analysis revealed that sesamin and its monocatechol metabolite promoted autophagy by inhibiting mammalian target of rapamycin complex 1 (mTORC1), leading to decreased phosphorylation of unc-51 like autophagy activating kinase 1 and transcription factor EB. This suppression enhanced the isolation membrane formation and transcriptionally stimulated autophagy and lysosomal biogenesis. Importantly, mTORC1 inhibition by sesamin and its metabolites did not affect mTORC2 activity, mirroring the mTORC1-selective inhibition observed with rapamycin. These results suggest that sesamin and episesamin contribute to diverse biological activities via their metabolism in the human body, regulating autophagy and mTORC1 signaling pathways.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"765 ","pages":"Article 151816"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25005303","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sesamin and episesamin, the major lignans found in refined sesame oil, reportedly exert antioxidant, anti-inflammatory, and hypocholesterolemic effects. Sesamin has also been suggested by previous studies to promote autophagy; however, concerns have been raised regarding the use of non-physiological concentrations, inaccurate methods for evaluating autophagic activity, and incomplete understanding of underlying mechanisms. Additionally, the effects of its metabolic kinetics on autophagy remain unclear. In this study, we demonstrated that sesamin, episesamin, and their metabolites induced autophagy flux at physiological concentrations in human cell cultures expressing monomeric red fluorescent protein-green fluorescent protein tandem fluorescent-tagged microtubule-associated protein 1A/1B-light-chain 3 proteins, a robust method for monitoring autophagy flux. Notably, the monocatechol metabolites of sesamin and episesamin exhibited higher autophagy flux than their unmetabolized forms. Immunoblotting analysis revealed that sesamin and its monocatechol metabolite promoted autophagy by inhibiting mammalian target of rapamycin complex 1 (mTORC1), leading to decreased phosphorylation of unc-51 like autophagy activating kinase 1 and transcription factor EB. This suppression enhanced the isolation membrane formation and transcriptionally stimulated autophagy and lysosomal biogenesis. Importantly, mTORC1 inhibition by sesamin and its metabolites did not affect mTORC2 activity, mirroring the mTORC1-selective inhibition observed with rapamycin. These results suggest that sesamin and episesamin contribute to diverse biological activities via their metabolism in the human body, regulating autophagy and mTORC1 signaling pathways.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics