Multi-source transfer network for cross-domain state of charge estimation of lithium-ion batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Delong Mu , Wenliang Zhang , Bing Lin , Chenye Lin , Yu Lu
{"title":"Multi-source transfer network for cross-domain state of charge estimation of lithium-ion batteries","authors":"Delong Mu ,&nbsp;Wenliang Zhang ,&nbsp;Bing Lin ,&nbsp;Chenye Lin ,&nbsp;Yu Lu","doi":"10.1016/j.est.2025.116636","DOIUrl":null,"url":null,"abstract":"<div><div>The state of charge (SOC) in lithium-ion batteries plays a crucial role in battery management systems (BMS). Accurate SOC estimation is essential for extending battery life and ensuring safe operation. In recent years, many deep transfer learning methods have been applied to the field of SOC estimation. However, most existing approaches only consider single-source domains. In practical scenarios, multiple datasets may come from batteries with different materials or operate under varying conditions. These datasets not only differ from the target domain but also exhibit distributional differences among themselves. To leverage information from multiple source domains and enhance model performance in the target domain, this paper proposes a Multi-Domain Transfer Neural Network (MDTNN) framework. This method aligns the feature distributions between each source domain and the target domain in multiple feature spaces, enabling effective learning from multiple source domains and improving target domain performance. Extensive experimental results demonstrate that MDTNN outperforms other methods in various transfer scenarios, achieving accurate and robust SOC estimation.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"123 ","pages":"Article 116636"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25013490","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The state of charge (SOC) in lithium-ion batteries plays a crucial role in battery management systems (BMS). Accurate SOC estimation is essential for extending battery life and ensuring safe operation. In recent years, many deep transfer learning methods have been applied to the field of SOC estimation. However, most existing approaches only consider single-source domains. In practical scenarios, multiple datasets may come from batteries with different materials or operate under varying conditions. These datasets not only differ from the target domain but also exhibit distributional differences among themselves. To leverage information from multiple source domains and enhance model performance in the target domain, this paper proposes a Multi-Domain Transfer Neural Network (MDTNN) framework. This method aligns the feature distributions between each source domain and the target domain in multiple feature spaces, enabling effective learning from multiple source domains and improving target domain performance. Extensive experimental results demonstrate that MDTNN outperforms other methods in various transfer scenarios, achieving accurate and robust SOC estimation.
锂离子电池跨域充电状态估计的多源传输网络
锂离子电池的荷电状态(SOC)在电池管理系统(BMS)中起着至关重要的作用。准确的SOC估算对于延长电池寿命和确保安全运行至关重要。近年来,许多深度迁移学习方法被应用于SOC估计领域。然而,大多数现有的方法只考虑单源域。在实际场景中,多个数据集可能来自不同材料的电池或在不同条件下运行。这些数据集不仅与目标域不同,而且它们之间也表现出分布上的差异。为了利用多源域的信息,提高模型在目标域的性能,本文提出了一种多域传递神经网络(MDTNN)框架。该方法在多个特征空间中对每个源域和目标域的特征分布进行对齐,实现了对多个源域的有效学习,提高了目标域的性能。大量的实验结果表明,MDTNN在各种传输场景下优于其他方法,实现了准确和鲁棒的SOC估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信