First-principles investigation of structural, electronic, optical, and thermoelectric properties of Mn2+-Substituted NaAl11O17 phosphor compounds for advanced optoelectronic applications

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mehvish Fatima , Sikander Azam , Mahpara Ghazanfar , Shagufta Rasool , Qaiser Rafiq , Abroo Aiman , Imed Boukhris , Norah Salem Alsaiari , Azhar Qayyum
{"title":"First-principles investigation of structural, electronic, optical, and thermoelectric properties of Mn2+-Substituted NaAl11O17 phosphor compounds for advanced optoelectronic applications","authors":"Mehvish Fatima ,&nbsp;Sikander Azam ,&nbsp;Mahpara Ghazanfar ,&nbsp;Shagufta Rasool ,&nbsp;Qaiser Rafiq ,&nbsp;Abroo Aiman ,&nbsp;Imed Boukhris ,&nbsp;Norah Salem Alsaiari ,&nbsp;Azhar Qayyum","doi":"10.1016/j.jpcs.2025.112758","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance materials for optoelectronic and thermoelectric applications is a key area of contemporary research. This study presents a comprehensive first-principles investigation into the structural, mechanical, electronic, optical, and thermoelectric properties of pristine NaAl<sub>11</sub>O<sub>17</sub> and its Mn<sup>2+</sup>-Substituted counterpart, [NaAl<sub>11</sub>O<sub>17</sub>]:Mn<sup>2+</sup>, utilizing density functional theory (DFT) within the GGA + U framework. Our findings reveal that Mn<sup>2+</sup> doping significantly modifies the electronic structure of NaAl<sub>11</sub>O<sub>17</sub>, reducing its bandgap from 4.49 eV to 1.1 eV (spin-up) and 3.9 eV (spin-down). This substantial bandgap reduction enhances the material's optoelectronic properties, positioning [NaAl<sub>11</sub>O<sub>17</sub>]:Mn<sup>2+</sup> as a promising candidate for light-emitting diodes (LEDs), photovoltaic devices, and display technologies.</div><div>The mechanical properties of the Substituted material demonstrate improved ductility and elastic stability, which are crucial for flexible device applications. Optical analyses, including dielectric function, absorption coefficient, refractive index, and reflectivity, indicate enhanced absorption in the visible range and stronger interaction with electromagnetic radiation upon doping. These changes are attributed to the introduction of localized Mn-derived states near the Fermi level, facilitating efficient electron excitation and radiative recombination processes.</div><div>Thermoelectric evaluations reveal notable improvements in the Seebeck coefficient, electrical conductivity, and a marked decrease in thermal conductivity for the Substituted compound. The synergistic effect of these parameters yields an enhanced figure of merit (ZT), increasing from 0.01 in pristine NaAl<sub>11</sub>O<sub>17</sub> to 0.12 at elevated temperatures for [NaAl<sub>11</sub>O<sub>17</sub>]:Mn<sup>2+</sup>. This enhancement stems from increased phonon scattering due to Mn incorporation and the favorable electronic structure modifications. Furthermore, effective mass calculations highlight that Mn<sup>2+</sup> doping slightly increases the electron and hole effective masses, promoting carrier localization and improving luminescence efficiency.</div><div>Overall, this work underscores the transformative potential of Mn<sup>2+</sup> doping in tailoring the physical properties of NaAl<sub>11</sub>O<sub>17</sub>, making [NaAl<sub>11</sub>O<sub>17</sub>]:Mn<sup>2+</sup> a compelling material for next-generation optoelectronic and thermoelectric applications. The insights derived from this study not only deepen the understanding of doping effects in complex oxides but also pave the way for designing eco-friendly and efficient energy conversion devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112758"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance materials for optoelectronic and thermoelectric applications is a key area of contemporary research. This study presents a comprehensive first-principles investigation into the structural, mechanical, electronic, optical, and thermoelectric properties of pristine NaAl11O17 and its Mn2+-Substituted counterpart, [NaAl11O17]:Mn2+, utilizing density functional theory (DFT) within the GGA + U framework. Our findings reveal that Mn2+ doping significantly modifies the electronic structure of NaAl11O17, reducing its bandgap from 4.49 eV to 1.1 eV (spin-up) and 3.9 eV (spin-down). This substantial bandgap reduction enhances the material's optoelectronic properties, positioning [NaAl11O17]:Mn2+ as a promising candidate for light-emitting diodes (LEDs), photovoltaic devices, and display technologies.
The mechanical properties of the Substituted material demonstrate improved ductility and elastic stability, which are crucial for flexible device applications. Optical analyses, including dielectric function, absorption coefficient, refractive index, and reflectivity, indicate enhanced absorption in the visible range and stronger interaction with electromagnetic radiation upon doping. These changes are attributed to the introduction of localized Mn-derived states near the Fermi level, facilitating efficient electron excitation and radiative recombination processes.
Thermoelectric evaluations reveal notable improvements in the Seebeck coefficient, electrical conductivity, and a marked decrease in thermal conductivity for the Substituted compound. The synergistic effect of these parameters yields an enhanced figure of merit (ZT), increasing from 0.01 in pristine NaAl11O17 to 0.12 at elevated temperatures for [NaAl11O17]:Mn2+. This enhancement stems from increased phonon scattering due to Mn incorporation and the favorable electronic structure modifications. Furthermore, effective mass calculations highlight that Mn2+ doping slightly increases the electron and hole effective masses, promoting carrier localization and improving luminescence efficiency.
Overall, this work underscores the transformative potential of Mn2+ doping in tailoring the physical properties of NaAl11O17, making [NaAl11O17]:Mn2+ a compelling material for next-generation optoelectronic and thermoelectric applications. The insights derived from this study not only deepen the understanding of doping effects in complex oxides but also pave the way for designing eco-friendly and efficient energy conversion devices.
用于先进光电应用的Mn2+取代的NaAl11O17荧光粉化合物的结构、电子、光学和热电性质的第一性原理研究
开发用于光电和热电应用的高性能材料是当代研究的一个关键领域。本研究利用GGA + U框架内的密度泛函理论(DFT),对原始NaAl11O17及其Mn2+取代对应物[NaAl11O17]:Mn2+的结构、机械、电子、光学和热电性质进行了全面的第一性原理研究。研究结果表明,掺杂Mn2+显著改变了NaAl11O17的电子结构,使其带隙从4.49 eV减小到1.1 eV(自旋向上)和3.9 eV(自旋向下)。这种实质性的带隙减小增强了材料的光电性能,使[NaAl11O17]:Mn2+成为发光二极管(led)、光伏器件和显示技术的有前途的候选者。替代材料的机械性能表现出更好的延展性和弹性稳定性,这对柔性器件的应用至关重要。光学分析,包括介电函数、吸收系数、折射率和反射率,表明掺杂后在可见光范围内的吸收增强,与电磁辐射的相互作用增强。这些变化归因于在费米能级附近引入局域化的mn衍生态,促进了有效的电子激发和辐射复合过程。热电评价表明,取代化合物在塞贝克系数、导电性和导热性方面有显著改善。这些参数的协同效应产生了一个增强的品质系数(ZT),从原始NaAl11O17的0.01增加到[NaAl11O17]:Mn2+在高温下的0.12。这种增强是由于Mn的加入和有利的电子结构修饰导致声子散射增加。此外,有效质量计算表明,掺杂Mn2+略微增加了电子和空穴的有效质量,促进了载流子的局部化,提高了发光效率。总的来说,这项工作强调了Mn2+掺杂在调整NaAl11O17的物理性质方面的变革潜力,使[NaAl11O17]:Mn2+成为下一代光电和热电应用的引人注目的材料。该研究不仅加深了对复杂氧化物掺杂效应的理解,而且为设计环保高效的能量转换装置铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信