Eduarda M.O. Silveira , Sarah Olimb , Glenn E. Plumb , Jeff M. Martin , Dustin H. Ranglack , Dennis Jorgensen , Anastasia Kirilyuk , Haqiq Rahmani , Volker C. Radeloff
{"title":"Potential fence density in central and Western North America and implications for Bison (Bison bison) restoration","authors":"Eduarda M.O. Silveira , Sarah Olimb , Glenn E. Plumb , Jeff M. Martin , Dustin H. Ranglack , Dennis Jorgensen , Anastasia Kirilyuk , Haqiq Rahmani , Volker C. Radeloff","doi":"10.1016/j.biocon.2025.111194","DOIUrl":null,"url":null,"abstract":"<div><div>Fences serve multiple purposes, including livestock management, agriculture, property delineation, and conservation. However, fences often act as ecological barriers, limiting wildlife movement and access to resources, particularly for species like bison (<em>Bison bison</em>) in North America. Despite the substantial impacts of fencing, large-scale datasets on fence densities are lacking. Our goal was to create potential fence density maps for the western and central U.S. and Canada using GIS modelling and freely accessible data. Specifically, we aimed to: (1) map potential fence density and identify high density of fence, (2) contrast the potential fence density map with the patterns of high human influences, and (3) identify areas with high bison habitat suitability and low density of potential fences. Using GIS modelling, we generated potential fence density maps by integrating data on land parcels, croplands, roads, and railroads. Subsequently, we identified regions with high and low potential fence density and compared them with patterns of human influence and bison habitat suitability. We found high total potential fence density in central regions of Canada and the U.S., mainly due to agriculture and transportation corridors. Interestingly, areas with high potential density of fence in the western U.S., often had low other human influence, suggesting that human influence maps may underestimate impacts if they miss fences. We also identified large areas with high bison habitat suitability and low fence density, which are promising for bison restoration. Our findings highlight the importance of assessing fences for wildlife conservation and supporting bison restoration in the Great Plains.</div></div>","PeriodicalId":55375,"journal":{"name":"Biological Conservation","volume":"307 ","pages":"Article 111194"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006320725002319","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Fences serve multiple purposes, including livestock management, agriculture, property delineation, and conservation. However, fences often act as ecological barriers, limiting wildlife movement and access to resources, particularly for species like bison (Bison bison) in North America. Despite the substantial impacts of fencing, large-scale datasets on fence densities are lacking. Our goal was to create potential fence density maps for the western and central U.S. and Canada using GIS modelling and freely accessible data. Specifically, we aimed to: (1) map potential fence density and identify high density of fence, (2) contrast the potential fence density map with the patterns of high human influences, and (3) identify areas with high bison habitat suitability and low density of potential fences. Using GIS modelling, we generated potential fence density maps by integrating data on land parcels, croplands, roads, and railroads. Subsequently, we identified regions with high and low potential fence density and compared them with patterns of human influence and bison habitat suitability. We found high total potential fence density in central regions of Canada and the U.S., mainly due to agriculture and transportation corridors. Interestingly, areas with high potential density of fence in the western U.S., often had low other human influence, suggesting that human influence maps may underestimate impacts if they miss fences. We also identified large areas with high bison habitat suitability and low fence density, which are promising for bison restoration. Our findings highlight the importance of assessing fences for wildlife conservation and supporting bison restoration in the Great Plains.
期刊介绍:
Biological Conservation is an international leading journal in the discipline of conservation biology. The journal publishes articles spanning a diverse range of fields that contribute to the biological, sociological, and economic dimensions of conservation and natural resource management. The primary aim of Biological Conservation is the publication of high-quality papers that advance the science and practice of conservation, or which demonstrate the application of conservation principles for natural resource management and policy. Therefore it will be of interest to a broad international readership.