Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds

Q1 Computer Science
Xiongjie Yin , Jinquan He , Zhanglin Cheng
{"title":"Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds","authors":"Xiongjie Yin ,&nbsp;Jinquan He ,&nbsp;Zhanglin Cheng","doi":"10.1016/j.vrih.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient three-dimensional (3D) building reconstruction from drone imagery often faces data acquisition, storage, and computational challenges because of its reliance on dense point clouds. In this study, we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds. Our approach eliminates the need to generate dense point clouds, and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data. We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm. This algorithm projects 3D line clouds onto a 2D plane, clusters the projections to identify potential planes, and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction. Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method, demonstrating its superiority over existing techniques in terms of simplicity and efficiency.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 2","pages":"Pages 111-126"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579625000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient three-dimensional (3D) building reconstruction from drone imagery often faces data acquisition, storage, and computational challenges because of its reliance on dense point clouds. In this study, we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds. Our approach eliminates the need to generate dense point clouds, and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data. We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm. This algorithm projects 3D line clouds onto a 2D plane, clusters the projections to identify potential planes, and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction. Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method, demonstrating its superiority over existing techniques in terms of simplicity and efficiency.
使用稀疏的线和点云从无人机图像中高效和轻量级的3D建筑重建
从无人机图像中高效重建三维(3D)建筑往往面临数据采集、存储和计算方面的挑战,因为它依赖于密集的点云。在这项研究中,我们介绍了一种利用线云和稀疏点云从无人机图像中高效、轻量级重建三维建筑物的新方法。我们的方法无需生成密集的点云,直接从稀疏数据中重建三维模型,从而大大减轻了计算负担。我们使用一种新算法解决了线云在平面检测和重建方面的局限性。该算法将三维线云投影到二维平面上,对投影进行聚类以识别潜在平面,并利用稀疏点云对其进行细化,以确保准确高效地重建模型。广泛的定性和定量实验证明了我们的方法的有效性,证明了它在简便性和效率方面优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信