Shaaban M. Shaaban , Ali Basem , Suha A. Mohammed , Wissam H. Alawee , Hasan Sh Majdi , A. Aldabesh , Z.M. Omara , M.M. Younes
{"title":"Effects of employing external condensers or phase-change materials on the performance of different solar still systems with different modifications","authors":"Shaaban M. Shaaban , Ali Basem , Suha A. Mohammed , Wissam H. Alawee , Hasan Sh Majdi , A. Aldabesh , Z.M. Omara , M.M. Younes","doi":"10.1016/j.csite.2025.106181","DOIUrl":null,"url":null,"abstract":"<div><div>The yield of the solar still has been increased using a variety of techniques. The condensing surface's temperature has consequently risen, this negatively impacts the speed of condensing. Numerous techniques have been investigated to cool the condensing surface, such as water cooling, air cooling, adding phase-changing material (PCM), or an external condenser with a suction fan. Analysing previous investigations on cooling glass covers using an external condenser or PCM to ascertain which is more effective was the primary objective of this study. Also, this review aims to promote greater innovation in this field by highlighting promising directions for further investigation. The findings of the literature review indicate that cooling glass with a fan and condensing vapor in the feed water tank works better than cooling glass utilizing Nano PCM. Besides, the thermal efficiency ranges resulting from the addition of an external condenser or PCM are 42 %–72.4 % and 50.7 %–65 %, respectively. And the increases in solar still production when PCM or an external condenser is added range from 26 % to 44 % and 25 %–68 %, respectively. Where the lowest expenses per liter of freshwater generated by external condenser or PCM systems are 0.01 $ and 0.011 $, respectively. Consequently, as compared to PCM systems, solar still systems with an external condenser have higher output, better efficiency, and a lower cost per liter of freshwater.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106181"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The yield of the solar still has been increased using a variety of techniques. The condensing surface's temperature has consequently risen, this negatively impacts the speed of condensing. Numerous techniques have been investigated to cool the condensing surface, such as water cooling, air cooling, adding phase-changing material (PCM), or an external condenser with a suction fan. Analysing previous investigations on cooling glass covers using an external condenser or PCM to ascertain which is more effective was the primary objective of this study. Also, this review aims to promote greater innovation in this field by highlighting promising directions for further investigation. The findings of the literature review indicate that cooling glass with a fan and condensing vapor in the feed water tank works better than cooling glass utilizing Nano PCM. Besides, the thermal efficiency ranges resulting from the addition of an external condenser or PCM are 42 %–72.4 % and 50.7 %–65 %, respectively. And the increases in solar still production when PCM or an external condenser is added range from 26 % to 44 % and 25 %–68 %, respectively. Where the lowest expenses per liter of freshwater generated by external condenser or PCM systems are 0.01 $ and 0.011 $, respectively. Consequently, as compared to PCM systems, solar still systems with an external condenser have higher output, better efficiency, and a lower cost per liter of freshwater.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.