Covalent binding of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) and its co-delivery with Lipusu, a novel synergistic strategy to inhibit the proliferation of nasopharyngeal cancer
Min Feng , Wei Gong , Xin Zhu , Juan Zhu , Junjie Hu , Weihua Xu , Zhichao Ma , Shengmiao Fu , Xinping Chen
{"title":"Covalent binding of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) and its co-delivery with Lipusu, a novel synergistic strategy to inhibit the proliferation of nasopharyngeal cancer","authors":"Min Feng , Wei Gong , Xin Zhu , Juan Zhu , Junjie Hu , Weihua Xu , Zhichao Ma , Shengmiao Fu , Xinping Chen","doi":"10.1016/j.ejps.2025.107092","DOIUrl":null,"url":null,"abstract":"<div><div>As the world's only commercially available paclitaxel liposome, Lipusu (Lip) has been clinically used in chemotherapy for >20 years, but the design concept of Lip remains largely unchanged since its initial development. Based on the study of Acetyl-CoA-carboxylase 1 (ACC1) in nasopharyngeal carcinoma (NPC), we proposed the concept of next-generation liposomes (NGL) utilizing lipid demand balance. In this study, we evaluated the feasibility of ACC1 and integrin α<sub>V</sub>β<sub>3</sub> as NPC targets, and designed 10 conjugates of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) that can bind to Lip. Considering the results of chemical parameter prediction, molecular docking, molecular dynamics simulation (MD) and other aspects, we finally selected and synthesized the compound F, and successfully constructed F-Lip by simple incubation method. Compared with Lip, F-Lip showed stronger toxicity in both HONE-1 cells and corresponding tumor-bearing mice. In conclusion, by regulating the balance of lipid demand, the toxicity of Lip can be improved so as to achieve the goal of inhibiting the proliferation of NPC. This study provides a new model for the future design and development of Lip.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"209 ","pages":"Article 107092"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725000910","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
As the world's only commercially available paclitaxel liposome, Lipusu (Lip) has been clinically used in chemotherapy for >20 years, but the design concept of Lip remains largely unchanged since its initial development. Based on the study of Acetyl-CoA-carboxylase 1 (ACC1) in nasopharyngeal carcinoma (NPC), we proposed the concept of next-generation liposomes (NGL) utilizing lipid demand balance. In this study, we evaluated the feasibility of ACC1 and integrin αVβ3 as NPC targets, and designed 10 conjugates of 5-tetradecyloxy-2-furoic acid (TOFA) and c(RGDfK) that can bind to Lip. Considering the results of chemical parameter prediction, molecular docking, molecular dynamics simulation (MD) and other aspects, we finally selected and synthesized the compound F, and successfully constructed F-Lip by simple incubation method. Compared with Lip, F-Lip showed stronger toxicity in both HONE-1 cells and corresponding tumor-bearing mice. In conclusion, by regulating the balance of lipid demand, the toxicity of Lip can be improved so as to achieve the goal of inhibiting the proliferation of NPC. This study provides a new model for the future design and development of Lip.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.