Imatinib detection by memristive biosensors for therapeutic drug monitoring

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Junrui Chen , Lavinia Alberi , Yuan Pétermann , Thierry Buclin , Monia Guidi , Sandro Carrara
{"title":"Imatinib detection by memristive biosensors for therapeutic drug monitoring","authors":"Junrui Chen ,&nbsp;Lavinia Alberi ,&nbsp;Yuan Pétermann ,&nbsp;Thierry Buclin ,&nbsp;Monia Guidi ,&nbsp;Sandro Carrara","doi":"10.1016/j.biosx.2025.100620","DOIUrl":null,"url":null,"abstract":"<div><div>Therapeutic drug monitoring is essential for optimizing the efficacy and safety of targeted anticancer agents like imatinib, a first-line treatment for various leukemias and gastrointestinal stromal tumors. This study introduces a novel memristive biosensor designed for the detection of imatinib. The biosensor employs a silicon nanowire (SiNW) -based memristive architecture integrated with a single-stranded DNA (ssDNA) aptamer as the bio-recognition element. The detection of imatinib concentration is successfully demonstrated in both buffer and human plasma. Kinetic analysis reveals that the analysis time for achieving binding equilibrium and measurement is within 10 min. Comprehensive linear response over Imatinib concentrations in human plasma ranging from 0.2 μM to 20 μM was achieved, with a detection limit of 0.13 μM. While the interfering proteins such as human serum albumin (HSA) and α1-acid glycoprotein (AGP) compete with the binding mechanism, resulting in a decreased measured signal at lower concentrations of imatinib, their excessive presence paradoxically amplifies the measured signal. This amplification, however, also introduces increased variability in plasma measurements. This innovative memristive biosensor represents a significant advancement towards point-of-care therapeutic drug monitoring. It offers a robust and scalable platform, paving the way for the integration of personalized medicine into routine clinical workflows for imatinib-based therapies.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100620"},"PeriodicalIF":10.6100,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic drug monitoring is essential for optimizing the efficacy and safety of targeted anticancer agents like imatinib, a first-line treatment for various leukemias and gastrointestinal stromal tumors. This study introduces a novel memristive biosensor designed for the detection of imatinib. The biosensor employs a silicon nanowire (SiNW) -based memristive architecture integrated with a single-stranded DNA (ssDNA) aptamer as the bio-recognition element. The detection of imatinib concentration is successfully demonstrated in both buffer and human plasma. Kinetic analysis reveals that the analysis time for achieving binding equilibrium and measurement is within 10 min. Comprehensive linear response over Imatinib concentrations in human plasma ranging from 0.2 μM to 20 μM was achieved, with a detection limit of 0.13 μM. While the interfering proteins such as human serum albumin (HSA) and α1-acid glycoprotein (AGP) compete with the binding mechanism, resulting in a decreased measured signal at lower concentrations of imatinib, their excessive presence paradoxically amplifies the measured signal. This amplification, however, also introduces increased variability in plasma measurements. This innovative memristive biosensor represents a significant advancement towards point-of-care therapeutic drug monitoring. It offers a robust and scalable platform, paving the way for the integration of personalized medicine into routine clinical workflows for imatinib-based therapies.
记忆体生物传感器检测伊马替尼用于治疗药物监测
治疗药物监测对于优化伊马替尼等靶向抗癌药物的疗效和安全性至关重要,伊马替尼是各种白血病和胃肠道间质肿瘤的一线治疗药物。本研究介绍了一种用于检测伊马替尼的新型记忆体生物传感器。该生物传感器采用基于硅纳米线(SiNW)的忆阻结构,集成单链DNA (ssDNA)适体作为生物识别元件。在缓冲液和人血浆中成功地检测了伊马替尼的浓度。动力学分析表明,该方法可在10 min内实现结合平衡和测量,对人血浆中伊马替尼浓度在0.2 μM ~ 20 μM范围内实现全面线性响应,检出限为0.13 μM。虽然干扰蛋白如人血清白蛋白(HSA)和α1-酸性糖蛋白(AGP)与结合机制竞争,导致在低浓度伊马替尼下测量信号减弱,但它们的过量存在却矛盾地放大了测量信号。然而,这种放大也增加了等离子体测量的可变性。这种创新的记忆体生物传感器代表了护理点治疗药物监测的重大进步。它提供了一个强大且可扩展的平台,为将个性化医疗整合到伊马替尼治疗的常规临床工作流程中铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信