Marcelo B. Fonsêca , Vanda M. Lourenço , Paulo C. Rodrigues
{"title":"A robust-weighted AMMI modeling approach with generalized weighting schemes","authors":"Marcelo B. Fonsêca , Vanda M. Lourenço , Paulo C. Rodrigues","doi":"10.1016/j.ecoinf.2025.103110","DOIUrl":null,"url":null,"abstract":"<div><div>The additive main effects and multiplicative interaction (AMMI) model and its variations are widely used to identify genotypes with specific adaptability and stability under environmental conditions in crop improvement breeding programs. However, atypical data points, arising from measurement errors, genotype characteristics, diseases, or climate phenomena, can significantly impact the model’s performance, by contributing to the violation of its underlying assumptions. To address this challenge, we propose a hybrid modeling framework called robust-weighted AMMI (RW-AMMI), which combines robust and weighted algorithms to effectively model genotype-by-environment interaction (GEI) in the presence of data contamination and heteroscedasticity. We also introduce a comprehensive set of nine weighting schemes for the weighted (W-AMMI), robust (R-AMMI), and RW-AMMI models. Our extensive Monte Carlo simulations, which encompass both contaminated and uncontaminated data with and without heterogeneous error variance, demonstrate that several models within the W-AMMI, R-AMMI, and RW-AMMI classes perform competitively relative to the conventional AMMI model. Furthermore, we validate the effectiveness of the proposed approach using real crop data, where we leverage ensemble strategies to enhance genotype recommendations, providing practical evidence of its applicability. This work provides a hybrid framework for genotype selection under diverse environmental conditions, offering breeders a reliable tool for improving stability and adaptability.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"88 ","pages":"Article 103110"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001190","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The additive main effects and multiplicative interaction (AMMI) model and its variations are widely used to identify genotypes with specific adaptability and stability under environmental conditions in crop improvement breeding programs. However, atypical data points, arising from measurement errors, genotype characteristics, diseases, or climate phenomena, can significantly impact the model’s performance, by contributing to the violation of its underlying assumptions. To address this challenge, we propose a hybrid modeling framework called robust-weighted AMMI (RW-AMMI), which combines robust and weighted algorithms to effectively model genotype-by-environment interaction (GEI) in the presence of data contamination and heteroscedasticity. We also introduce a comprehensive set of nine weighting schemes for the weighted (W-AMMI), robust (R-AMMI), and RW-AMMI models. Our extensive Monte Carlo simulations, which encompass both contaminated and uncontaminated data with and without heterogeneous error variance, demonstrate that several models within the W-AMMI, R-AMMI, and RW-AMMI classes perform competitively relative to the conventional AMMI model. Furthermore, we validate the effectiveness of the proposed approach using real crop data, where we leverage ensemble strategies to enhance genotype recommendations, providing practical evidence of its applicability. This work provides a hybrid framework for genotype selection under diverse environmental conditions, offering breeders a reliable tool for improving stability and adaptability.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.