{"title":"The evolution of preimplantation genetic testing: where is the limit?","authors":"Antonio Capalbo , Dagan Wells","doi":"10.1016/j.rbmo.2025.104845","DOIUrl":null,"url":null,"abstract":"<div><div>Preimplantation genetic testing (PGT) has revolutionized reproductive medicine over the past 30 years, providing a reliable method for reducing the risk of transmitting severe inherited conditions and offering the possibility of improved IVF outcomes. Today, PGT is widely accepted and integrated into fertility care in many countries around the world. Its history, however, has not been without controversy, with debate around its application to the diagnosis of late-onset disorders, conditions with incomplete penetrance and its use for embryo selection based upon human leukocyte antigen status. Nonetheless, PGT has progressively broadened its scope, and the number of embryos undergoing genetic testing continues to grow each year. Preimplantation genetic testing is most often used for the detection of chromosomal abnormalities, assisting in the identification of embryos affected by lethal aneuploidy. This application has generated the greatest debate of all, owing, in part, to difficulties delivering effective embryo testing using earlier methods. In recent years, advances in technology and rigorous validation studies have helped to improve accuracy, although variability among methods underscores the need for greater standardization and transparency. Emerging technologies, such as whole genome sequencing (WGS) and genome editing, hold promise for further advancements but introduce complex ethical, privacy and consent challenges that demand careful consideration, public engagement and thorough clinical research before implementation. Given its current trajectory, it seems likely that the use of PGT will continue to grow, offering reduced reproductive risks and the possibility of enhanced fertility treatment outcomes for ever greater numbers of patients, ultimately becoming an accepted cornerstone of reproductive care.</div></div>","PeriodicalId":21134,"journal":{"name":"Reproductive biomedicine online","volume":"50 4","pages":"Article 104845"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biomedicine online","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472648325000525","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preimplantation genetic testing (PGT) has revolutionized reproductive medicine over the past 30 years, providing a reliable method for reducing the risk of transmitting severe inherited conditions and offering the possibility of improved IVF outcomes. Today, PGT is widely accepted and integrated into fertility care in many countries around the world. Its history, however, has not been without controversy, with debate around its application to the diagnosis of late-onset disorders, conditions with incomplete penetrance and its use for embryo selection based upon human leukocyte antigen status. Nonetheless, PGT has progressively broadened its scope, and the number of embryos undergoing genetic testing continues to grow each year. Preimplantation genetic testing is most often used for the detection of chromosomal abnormalities, assisting in the identification of embryos affected by lethal aneuploidy. This application has generated the greatest debate of all, owing, in part, to difficulties delivering effective embryo testing using earlier methods. In recent years, advances in technology and rigorous validation studies have helped to improve accuracy, although variability among methods underscores the need for greater standardization and transparency. Emerging technologies, such as whole genome sequencing (WGS) and genome editing, hold promise for further advancements but introduce complex ethical, privacy and consent challenges that demand careful consideration, public engagement and thorough clinical research before implementation. Given its current trajectory, it seems likely that the use of PGT will continue to grow, offering reduced reproductive risks and the possibility of enhanced fertility treatment outcomes for ever greater numbers of patients, ultimately becoming an accepted cornerstone of reproductive care.
期刊介绍:
Reproductive BioMedicine Online covers the formation, growth and differentiation of the human embryo. It is intended to bring to public attention new research on biological and clinical research on human reproduction and the human embryo including relevant studies on animals. It is published by a group of scientists and clinicians working in these fields of study. Its audience comprises researchers, clinicians, practitioners, academics and patients.
Context:
The period of human embryonic growth covered is between the formation of the primordial germ cells in the fetus until mid-pregnancy. High quality research on lower animals is included if it helps to clarify the human situation. Studies progressing to birth and later are published if they have a direct bearing on events in the earlier stages of pregnancy.