Preparation, microstructure and mechanical properties of a Ce-PSZ reinforced molybdenum alloy

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fengshun Du , Bohua Duan , Dezhi Wang , Zhuangzhi Wu , Xinli Liu
{"title":"Preparation, microstructure and mechanical properties of a Ce-PSZ reinforced molybdenum alloy","authors":"Fengshun Du ,&nbsp;Bohua Duan ,&nbsp;Dezhi Wang ,&nbsp;Zhuangzhi Wu ,&nbsp;Xinli Liu","doi":"10.1016/j.ijrmhm.2025.107204","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the poor plasticity and fracture toughness of molybdenum alloys is the key to expanding their industrial applications. In this experiment, a cerium partially stabilized zirconia (Ce-PSZ) reinforced molybdenum alloy with outstanding properties was obtained by combining the hydrothermal method and the powder metallurgy technology. This study investigated how varying Ce-PSZ content influences the microstructure and mechanical properties of Mo/Ce-PSZ alloys. The results show that with increasing Ce-PSZ addition, the relative density and hardness of the alloys gradually increase, while the tensile strength, plasticity, and fracture toughness exhibit a tendency to initially increase and subsequently decrease. When 1.5 wt% of Ce-PSZ is added, the Mo alloys achieve excellent overall mechanical properties, with an ultimate tensile strength of 528.5 MPa, elongation of 29.3 %, and fracture toughness of 38.5 MPa∙m<sup>1/2</sup>. These values are about 22.7 %, 22.5 %, and 83.3 % higher than those of pure molybdenum. The substantial enhancement in elongation and fracture toughness can be predominantly ascribed to the refinement of grains and the stress-induced Ce-PSZ phase transformation. This research provides a novel method for the preparation of molybdenum alloys with high fracture toughness and elongation.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"131 ","pages":"Article 107204"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001696","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the poor plasticity and fracture toughness of molybdenum alloys is the key to expanding their industrial applications. In this experiment, a cerium partially stabilized zirconia (Ce-PSZ) reinforced molybdenum alloy with outstanding properties was obtained by combining the hydrothermal method and the powder metallurgy technology. This study investigated how varying Ce-PSZ content influences the microstructure and mechanical properties of Mo/Ce-PSZ alloys. The results show that with increasing Ce-PSZ addition, the relative density and hardness of the alloys gradually increase, while the tensile strength, plasticity, and fracture toughness exhibit a tendency to initially increase and subsequently decrease. When 1.5 wt% of Ce-PSZ is added, the Mo alloys achieve excellent overall mechanical properties, with an ultimate tensile strength of 528.5 MPa, elongation of 29.3 %, and fracture toughness of 38.5 MPa∙m1/2. These values are about 22.7 %, 22.5 %, and 83.3 % higher than those of pure molybdenum. The substantial enhancement in elongation and fracture toughness can be predominantly ascribed to the refinement of grains and the stress-induced Ce-PSZ phase transformation. This research provides a novel method for the preparation of molybdenum alloys with high fracture toughness and elongation.
Ce-PSZ增强钼合金的制备、显微组织及力学性能
改善钼合金较差的塑性和断裂韧性是扩大其工业应用的关键。本实验将水热法与粉末冶金技术相结合,获得了性能优异的铈部分稳定锆(Ce-PSZ)增强钼合金。研究了不同Ce-PSZ含量对Mo/Ce-PSZ合金组织和力学性能的影响。结果表明:随着Ce-PSZ添加量的增加,合金的相对密度和硬度逐渐增大,抗拉强度、塑性和断裂韧性呈现先增大后减小的趋势;当Ce-PSZ添加量为1.5 wt%时,Mo合金的综合力学性能优异,极限抗拉强度为528.5 MPa,延伸率为29.3%,断裂韧性为38.5 MPa∙m1/2。这些值分别比纯钼高22.7%、22.5%和83.3%。延伸率和断裂韧性的显著提高主要归因于晶粒的细化和应力诱导的Ce-PSZ相变。该研究为制备高断裂韧性和伸长率的钼合金提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信