Lang Cui , Guohui Xu , Kai Liu , Jianjie Hao , Jian Zhao , Jing Cui , Guang Liu , Enkang Hao , Jie Zou
{"title":"Influence of feedpowder morphology on microstructure and mechanical properties of Tantalum produced by cold spray additive manufacturing","authors":"Lang Cui , Guohui Xu , Kai Liu , Jianjie Hao , Jian Zhao , Jing Cui , Guang Liu , Enkang Hao , Jie Zou","doi":"10.1016/j.ijrmhm.2025.107203","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, two types of tantalum powders were deposited using cold spray additive manufacturing (CSAM). We focused on comparing the effects of hydride-dehydride polygonal tantalum powder (A-Ta) and plasma-atomized spherical tantalum powder (S<img>Ta) on the microstructure, mechanical properties, and tribological performance of the resulting deposits. Results revealed that under identical spraying conditions, A-Ta powder achieved a higher deposition efficiency (DE) of 86 %, compared to 61 % for S<img>Ta powder. Both deposits demonstrated low porosity; however, the A-Ta deposit exhibited significantly superior mechanical properties, with a tensile strength of 350 MPa, approximately 2.1 times higher than the S<img>Ta deposit. Moreover, the A-Ta deposit showed enhanced wear resistance. At a heat flux density of 2.4 MW/m<sup>2</sup>, the A-Ta deposit demonstrated excellent ablation resistance, exhibiting a linear ablation rate of only −0.0012 μm/s after a 10-s exposure. These findings highlight the considerable potential of low-cost polygonal A-Ta powder for high-temperature ablation protection applications, establishing it as a promising candidate for CSAM of tantalum layers.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"131 ","pages":"Article 107203"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001684","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two types of tantalum powders were deposited using cold spray additive manufacturing (CSAM). We focused on comparing the effects of hydride-dehydride polygonal tantalum powder (A-Ta) and plasma-atomized spherical tantalum powder (STa) on the microstructure, mechanical properties, and tribological performance of the resulting deposits. Results revealed that under identical spraying conditions, A-Ta powder achieved a higher deposition efficiency (DE) of 86 %, compared to 61 % for STa powder. Both deposits demonstrated low porosity; however, the A-Ta deposit exhibited significantly superior mechanical properties, with a tensile strength of 350 MPa, approximately 2.1 times higher than the STa deposit. Moreover, the A-Ta deposit showed enhanced wear resistance. At a heat flux density of 2.4 MW/m2, the A-Ta deposit demonstrated excellent ablation resistance, exhibiting a linear ablation rate of only −0.0012 μm/s after a 10-s exposure. These findings highlight the considerable potential of low-cost polygonal A-Ta powder for high-temperature ablation protection applications, establishing it as a promising candidate for CSAM of tantalum layers.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.