Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhipeng Shen, Baiyang Zhang
{"title":"Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions","authors":"Zhipeng Shen,&nbsp;Baiyang Zhang","doi":"10.1016/j.jmaa.2025.129589","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Q</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be a sequence of positive integers with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Then every <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is attached with a Cantor series expansion of the form<span><span><span><math><mi>x</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>.</mo></math></span></span></span> We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129589"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003701","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Q={qk}k1 be a sequence of positive integers with qk2 for all k1. Then every x[0,1] is attached with a Cantor series expansion of the formx=ϵ1(x)q1+ϵ2(x)q1q2++ϵn(x)q1qn+. We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.
康托级数展开中的非齐次和同时丢番图近似
设Q={qk}k≥1是一个正整数序列,对于所有k≥1,qk≥2。然后,每个x∈[0,1]都附加了形式为x=ϵ1(x)q1+ϵ2(x)q1q2+⋯+ϵn(x)q1⋯qn+⋯的康托尔级数展开。研究了康托级数展开中的非齐次近似和同时丢番图近似。在我们的框架中定义了几种版本的广义收缩目标集。我们将在勒贝格测度、豪斯多夫测度和豪斯多夫维数的意义上给出这些对象集的完整度量理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信