{"title":"Inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions","authors":"Zhipeng Shen, Baiyang Zhang","doi":"10.1016/j.jmaa.2025.129589","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Q</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> be a sequence of positive integers with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Then every <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is attached with a Cantor series expansion of the form<span><span><span><math><mi>x</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>+</mo><mfrac><mrow><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><mo>+</mo><mo>⋯</mo><mo>.</mo></math></span></span></span> We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129589"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003701","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a sequence of positive integers with for all . Then every is attached with a Cantor series expansion of the form We study inhomogeneous and simultaneous Diophantine approximation in Cantor series expansions. Several versions of generalized shrinking target sets are defined in our framework. We will give a complete metric theory of these object sets in the sense of Lebesgue measure, Hausdorff measure and Hausdorff dimension.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.