Molecular insights into the controlled release process of cyclodextrin-resveratrol inclusion complexes in the stratum corneum

IF 5.4 2区 医学 Q1 BIOPHYSICS
Xindong Yu , Shasha Liu , Ying Li , Shiling Yuan
{"title":"Molecular insights into the controlled release process of cyclodextrin-resveratrol inclusion complexes in the stratum corneum","authors":"Xindong Yu ,&nbsp;Shasha Liu ,&nbsp;Ying Li ,&nbsp;Shiling Yuan","doi":"10.1016/j.colsurfb.2025.114725","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclodextrins (CDs) are efficient drug carriers for improving drug solubility, stability, and bioavailability. However, the mechanism underlying the interaction between cyclodextrin-drug inclusion complexes and skin remains unclear. In this work, molecular simulations were employed to study the release process of cyclodextrin-resveratrol inclusion complexes on the surface of the lipid bilayer. The results showed that structural orientation significantly influences release kinetics. Resveratrol (RES) is able to form inclusion complexes with β-CD in two possible orientations: M-form (Mono-hydroxyl group toward the primary rim of β-CD) and D-form (Di-hydroxyl group toward the secondary rim of β-CD). M-form inclusion structures facilitated RES release more efficiently than D-form configurations. Cavity-specific lipid interactions are the dominant driver of the release process. Meanwhile, it was determined that the β-CD/RES inclusion complex exhibited greater stability than γ-CD/RES and demonstrated superior release efficiency at the lipid membrane surface in comparison to α-CD/RES. This suggests that the cavity size of β-CD is more suitable for delivering resveratrol. Furthermore, umbrella sampling simulations reveal that hydroxypropyl-substituted β-CD could lessen the irritation to the lipid bilayer. The present study provides a theoretical foundation for the rational design of CD-based drug delivery systems.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114725"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002322","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclodextrins (CDs) are efficient drug carriers for improving drug solubility, stability, and bioavailability. However, the mechanism underlying the interaction between cyclodextrin-drug inclusion complexes and skin remains unclear. In this work, molecular simulations were employed to study the release process of cyclodextrin-resveratrol inclusion complexes on the surface of the lipid bilayer. The results showed that structural orientation significantly influences release kinetics. Resveratrol (RES) is able to form inclusion complexes with β-CD in two possible orientations: M-form (Mono-hydroxyl group toward the primary rim of β-CD) and D-form (Di-hydroxyl group toward the secondary rim of β-CD). M-form inclusion structures facilitated RES release more efficiently than D-form configurations. Cavity-specific lipid interactions are the dominant driver of the release process. Meanwhile, it was determined that the β-CD/RES inclusion complex exhibited greater stability than γ-CD/RES and demonstrated superior release efficiency at the lipid membrane surface in comparison to α-CD/RES. This suggests that the cavity size of β-CD is more suitable for delivering resveratrol. Furthermore, umbrella sampling simulations reveal that hydroxypropyl-substituted β-CD could lessen the irritation to the lipid bilayer. The present study provides a theoretical foundation for the rational design of CD-based drug delivery systems.
环糊精-白藜芦醇包合物在角质层中控释过程的分子研究
环糊精是提高药物溶解度、稳定性和生物利用度的有效药物载体。然而,环糊精-药物包合物与皮肤相互作用的机制尚不清楚。本文采用分子模拟的方法研究了环糊精-白藜芦醇包合物在脂质双分子层表面的释放过程。结果表明,结构取向对释放动力学有显著影响。白藜芦醇(RES)与β-CD可以形成两种取向的包合物:m型(单羟基指向β-CD的一级边缘)和d型(双羟基指向β-CD的二级边缘)。m型包含结构比d型结构更有效地促进RES释放。腔特异性脂质相互作用是释放过程的主要驱动因素。同时,测定了β-CD/RES包合物的稳定性优于γ-CD/RES,在脂膜表面的释放效率优于α-CD/RES。这说明β-CD的腔体尺寸更适合传递白藜芦醇。此外,伞形采样模拟表明,羟丙基取代β-CD可以减轻对脂质双分子层的刺激。本研究为基于cd的给药系统的合理设计提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信