Unravelling the role of iron oxidation states in alkali-activated slags: A multinuclear solid-state NMR study on polymerization and structural evolution

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ziyou Yu , Alexios P. Douvalis , Rodrigo de Oliveira-Silva , Qifeng Shu , Yiannis Pontikes , Dimitrios Sakellariou
{"title":"Unravelling the role of iron oxidation states in alkali-activated slags: A multinuclear solid-state NMR study on polymerization and structural evolution","authors":"Ziyou Yu ,&nbsp;Alexios P. Douvalis ,&nbsp;Rodrigo de Oliveira-Silva ,&nbsp;Qifeng Shu ,&nbsp;Yiannis Pontikes ,&nbsp;Dimitrios Sakellariou","doi":"10.1016/j.cemconres.2025.107897","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the structure and polymerization behavior of Fe-bearing alkali-activated slags (AASs) is crucial for optimizing their macroscopic properties and expanding their applications in sustainable construction materials, radioactive waste storage, carbon sequestration, and other environmental technologies. This paper investigates the effect of iron oxidation state in precursor slags on the polymerization and microstructural evolution of synthesized AASs using advanced solid-state NMR with 1D MAS and 2D 3QMAS experiments. <sup>57</sup>Fe Mössbauer spectroscopy and Raman spectroscopy further provide insights into Fe coordination and phase composition. The synthesized slags were designed with controlled Fe content (&lt;10 wt%), ensuring sufficient NMR spectral resolution. The results show that after 7 days of curing, AASs synthesized from Fe<sup>2+</sup>-rich slag exhibits lower structure polymerization compared to those derived from the Fe<sup>3+</sup>-rich slags. After 1 year of storage, Fe<sup>2+</sup>-rich AAS undergoes further polymerization, leading to the formation of highly connected silicate structures. Based on the NMR analysis, we propose that Fe<sup>3+</sup> is incorporated into the Al<sup>VI</sup> site in hydrotalcite or as a charge balancing cation near the Al<sup>IV</sup> site in the bridging positions, with only a minor fraction potentially in tetrahedral coordination. This study highlights the critical role of iron oxidation state in tuning the polymerization and structural evolution of AASs, providing a fundamental understanding that can guide the design of next-generation Fe-bearing alkali-activated materials.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"195 ","pages":"Article 107897"},"PeriodicalIF":10.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625001164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the structure and polymerization behavior of Fe-bearing alkali-activated slags (AASs) is crucial for optimizing their macroscopic properties and expanding their applications in sustainable construction materials, radioactive waste storage, carbon sequestration, and other environmental technologies. This paper investigates the effect of iron oxidation state in precursor slags on the polymerization and microstructural evolution of synthesized AASs using advanced solid-state NMR with 1D MAS and 2D 3QMAS experiments. 57Fe Mössbauer spectroscopy and Raman spectroscopy further provide insights into Fe coordination and phase composition. The synthesized slags were designed with controlled Fe content (<10 wt%), ensuring sufficient NMR spectral resolution. The results show that after 7 days of curing, AASs synthesized from Fe2+-rich slag exhibits lower structure polymerization compared to those derived from the Fe3+-rich slags. After 1 year of storage, Fe2+-rich AAS undergoes further polymerization, leading to the formation of highly connected silicate structures. Based on the NMR analysis, we propose that Fe3+ is incorporated into the AlVI site in hydrotalcite or as a charge balancing cation near the AlIV site in the bridging positions, with only a minor fraction potentially in tetrahedral coordination. This study highlights the critical role of iron oxidation state in tuning the polymerization and structural evolution of AASs, providing a fundamental understanding that can guide the design of next-generation Fe-bearing alkali-activated materials.
揭示碱活性渣中铁氧化态的作用:聚合和结构演变的多核固体核磁共振研究
了解含铁碱活性渣(AASs)的结构和聚合行为,对于优化其宏观性能,扩大其在可持续建筑材料、放射性废物储存、碳封存和其他环境技术中的应用至关重要。本文采用先进的固态核磁共振技术,结合1D MAS和2D 3QMAS实验,研究了前驱渣中铁氧化态对合成AASs聚合和微观结构演变的影响。57Fe Mössbauer光谱和拉曼光谱进一步提供了对Fe配位和相组成的见解。合成的炉渣被设计为控制铁含量(<10 wt%),以确保足够的核磁共振光谱分辨率。结果表明:固化7 d后,富Fe2+渣合成的AASs结构聚合率低于富Fe3+渣合成的AASs;储存1年后,富Fe2+ AAS进一步聚合,形成高度连接的硅酸盐结构。基于核磁共振分析,我们提出Fe3+被结合到水滑石中的AlVI位点或作为桥接位置AlIV位点附近的电荷平衡阳离子,只有一小部分可能在四面体配位中。该研究强调了铁氧化态在调节AASs聚合和结构演化中的关键作用,为指导下一代含铁碱活化材料的设计提供了基础认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信