Yanjiao Li , Bin Jiang , Zhen Wu , Zhaoxia Ma , Lihua Qiu , Wen Cui , Yunhui Zhao , Jinghe Yan , Daiping Ma , Xingfei Wu , Shu Liang , Sitao Wang , Yanqun Zhao , Mengting Wang , Min Hu
{"title":"Engineering fibroblast with reprogramming and spheronization for bone defect repair","authors":"Yanjiao Li , Bin Jiang , Zhen Wu , Zhaoxia Ma , Lihua Qiu , Wen Cui , Yunhui Zhao , Jinghe Yan , Daiping Ma , Xingfei Wu , Shu Liang , Sitao Wang , Yanqun Zhao , Mengting Wang , Min Hu","doi":"10.1016/j.bioactmat.2025.04.021","DOIUrl":null,"url":null,"abstract":"<div><div>Bone diseases profoundly affect patients, particularly the elderly, leading to severe health complications and disabilities. Osteoblasts play a crucial role in bone formation and are ideal candidates for treating bone diseases and engineering living materials. However, the stem and progenitor cells that give rise to osteoblasts, as well as osteoblasts themselves, exhibit dysfunction with aging. Although chemical reprogramming of fibroblasts into osteoblasts has been achieved, effective cell-based therapies or living materials have not been established in clinical practice. Here, we present a method to engineer fibroblasts through small molecule reprogramming and spheronization, achieving functional osteoblastic materials across all age groups. By primarily targeting the WNT signaling pathway and modularizing small molecules based on their effects on stage-specific genes, we optimized the temporal regulation of small molecules during reprogramming, acquiring a large number of healthy induced osteoblasts (iOBs). These iOBs with traits of functional native osteoblasts are ideal for forming transplantable tissue spheroids. As innovative living materials, the iOB spheroids (iOB-Sps) have demonstrated improved survival, significant self-bone formation, reduced ROS levels in the defect microenvironment, and accelerated endogenous osteogenesis and angiogenesis in vivo, promoting effective healing of bone defects. These material-free iOB-Sps function as self-scaffolding building blocks for biofunctional constructs, offering a promising avenue for clinical autologous bone defect repair, especially for the elderly.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"50 ","pages":"Pages 414-431"},"PeriodicalIF":18.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001677","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone diseases profoundly affect patients, particularly the elderly, leading to severe health complications and disabilities. Osteoblasts play a crucial role in bone formation and are ideal candidates for treating bone diseases and engineering living materials. However, the stem and progenitor cells that give rise to osteoblasts, as well as osteoblasts themselves, exhibit dysfunction with aging. Although chemical reprogramming of fibroblasts into osteoblasts has been achieved, effective cell-based therapies or living materials have not been established in clinical practice. Here, we present a method to engineer fibroblasts through small molecule reprogramming and spheronization, achieving functional osteoblastic materials across all age groups. By primarily targeting the WNT signaling pathway and modularizing small molecules based on their effects on stage-specific genes, we optimized the temporal regulation of small molecules during reprogramming, acquiring a large number of healthy induced osteoblasts (iOBs). These iOBs with traits of functional native osteoblasts are ideal for forming transplantable tissue spheroids. As innovative living materials, the iOB spheroids (iOB-Sps) have demonstrated improved survival, significant self-bone formation, reduced ROS levels in the defect microenvironment, and accelerated endogenous osteogenesis and angiogenesis in vivo, promoting effective healing of bone defects. These material-free iOB-Sps function as self-scaffolding building blocks for biofunctional constructs, offering a promising avenue for clinical autologous bone defect repair, especially for the elderly.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.