{"title":"A Review on Reconfigurable Parallel Mechanisms: Design, Analysis and Challenge","authors":"Lin Wang , James W. Zhang , Dan Zhang","doi":"10.1016/j.eng.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>Reconfigurable parallel mechanisms were first discovered in response to the growing demand for flexible and adaptive systems in various fields. Unlike traditional mechanisms, which are designed for specific tasks and have fixed topology and mobility characteristics, a reconfigurable parallel mechanism can be adapted to different situations by changing its structure, motion, and function. This adaptability enables a single mechanism to perform a wide range of tasks, reducing the need for multiple dedicated systems. This paper presents a comprehensive review of reconfigurable parallel mechanisms. The characteristics of their designs, analyses of their properties, and challenges they face are reported. The beginning of this paper features an introduction of reconfigurable parallel mechanisms and their classification into different types. Methods for synthesizing reconfigurable parallel mechanisms are discussed. A performance evaluation index related to reconfigurability, workspace, singularity, stiffness, and dynamics, among other indices, is presented. This review covers the challenges faced in the creation of systematic design theories, unified performance analyses, evaluation index systems, and in the implementation of reconfigurable parallel mechanisms, such as the development of efficient control strategies and integration with other technologies. The paper concludes with a discussion of future research directions for reconfigurable parallel mechanisms.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"47 ","pages":"Pages 100-116"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924006246","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable parallel mechanisms were first discovered in response to the growing demand for flexible and adaptive systems in various fields. Unlike traditional mechanisms, which are designed for specific tasks and have fixed topology and mobility characteristics, a reconfigurable parallel mechanism can be adapted to different situations by changing its structure, motion, and function. This adaptability enables a single mechanism to perform a wide range of tasks, reducing the need for multiple dedicated systems. This paper presents a comprehensive review of reconfigurable parallel mechanisms. The characteristics of their designs, analyses of their properties, and challenges they face are reported. The beginning of this paper features an introduction of reconfigurable parallel mechanisms and their classification into different types. Methods for synthesizing reconfigurable parallel mechanisms are discussed. A performance evaluation index related to reconfigurability, workspace, singularity, stiffness, and dynamics, among other indices, is presented. This review covers the challenges faced in the creation of systematic design theories, unified performance analyses, evaluation index systems, and in the implementation of reconfigurable parallel mechanisms, such as the development of efficient control strategies and integration with other technologies. The paper concludes with a discussion of future research directions for reconfigurable parallel mechanisms.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.