F4-Appell series in p-adic settings and their connections to algebraic curves

IF 1.2 3区 数学 Q1 MATHEMATICS
Shaik Azharuddin , Gautam Kalita
{"title":"F4-Appell series in p-adic settings and their connections to algebraic curves","authors":"Shaik Azharuddin ,&nbsp;Gautam Kalita","doi":"10.1016/j.jmaa.2025.129601","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by an expression for the number of points on an algebraic curve in terms of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series over finite fields, we here define a <em>p</em>-adic analog for the <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series. Consequently, we find a relation of the number of points on the algebraic curve with the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series, extending the earlier result to all primes. Finally, we deduce some transformation formulas for the <em>p</em>-adic <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Appell series analogous to their classical counterparts.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129601"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003828","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by an expression for the number of points on an algebraic curve in terms of F4 Appell series over finite fields, we here define a p-adic analog for the F4 Appell series. Consequently, we find a relation of the number of points on the algebraic curve with the p-adic F4 Appell series, extending the earlier result to all primes. Finally, we deduce some transformation formulas for the p-adic F4 Appell series analogous to their classical counterparts.
p进设置中的f4 - apell级数及其与代数曲线的联系
在有限域上用F4 apell级数表示代数曲线上点的数目的表达式的激励下,我们在这里定义了F4 apell级数的p进类比。因此,我们找到了代数曲线上的点数与p进F4 apell级数的关系,将先前的结果推广到所有素数。最后,我们推导出了与经典等价的p进F4 apell级数的一些变换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信