Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies

Justin P. Edaugal, Difan Zhang*, Dupeng Liu*, Vassiliki-Alexandra Glezakou and Ning Sun*, 
{"title":"Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies","authors":"Justin P. Edaugal,&nbsp;Difan Zhang*,&nbsp;Dupeng Liu*,&nbsp;Vassiliki-Alexandra Glezakou and Ning Sun*,&nbsp;","doi":"10.1021/cbe.4c0017010.1021/cbe.4c00170","DOIUrl":null,"url":null,"abstract":"<p >As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic solvents (DESs). Artificial intelligence (AI) plays a key role in the discovery and design of novel solvents and the development of green processes. This review explores the latest advancements in AI-assisted solvent screening with a specific focus on machine learning (ML) models for physicochemical property prediction and separation process design. Additionally, this paper highlights recent progress in the development of automated high-throughput (HT) platforms for solvent screening. Finally, this paper discusses the challenges and prospects of ML-driven HT strategies for green solvent design and optimization. To this end, this review provides key insights to advance solvent screening strategies for future chemical and separation processes.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"210–228 210–228"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic solvents (DESs). Artificial intelligence (AI) plays a key role in the discovery and design of novel solvents and the development of green processes. This review explores the latest advancements in AI-assisted solvent screening with a specific focus on machine learning (ML) models for physicochemical property prediction and separation process design. Additionally, this paper highlights recent progress in the development of automated high-throughput (HT) platforms for solvent screening. Finally, this paper discusses the challenges and prospects of ML-driven HT strategies for green solvent design and optimization. To this end, this review provides key insights to advance solvent screening strategies for future chemical and separation processes.

利用机器学习和高通量技术筛选分离过程中的溶剂
随着化工行业向可持续实践的转变,越来越多的人开始用离子液体(ILs)和深共晶溶剂(DESs)等环保替代品取代传统的化石衍生溶剂。人工智能(AI)在新型溶剂的发现和设计以及绿色工艺的发展中起着关键作用。本文综述了人工智能辅助溶剂筛选的最新进展,重点介绍了用于物理化学性质预测和分离过程设计的机器学习(ML)模型。此外,本文重点介绍了溶剂筛选自动化高通量(HT)平台的最新进展。最后,本文讨论了机器学习驱动的绿色溶剂设计和优化的HT策略的挑战和前景。为此,本综述为未来化学和分离过程中溶剂筛选策略的发展提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信