{"title":"Thermalization without Detailed Balance: Population Oscillations in the Absence of Coherences","authors":"Shay Blum, and , David Gelbwaser-Klimovsky*, ","doi":"10.1021/acs.jpclett.5c0049910.1021/acs.jpclett.5c00499","DOIUrl":null,"url":null,"abstract":"<p >Open quantum systems that comply with the master equation and detailed balance decay in a non-oscillatory manner to thermal equilibrium. Beyond the weak coupling limit, systems that break microreversibility (e.g., in the presence of magnetic fields) violate detailed balance but still thermalize. We study the thermalization of these systems and show that a temperature increase produces novel exceptional points that indicate a sharp transition in the thermalization dynamics. A further temperature increase fuels oscillations of the energy level populations, even without quantum coherences. Moreover, the violation of detailed balance introduces an energy scale that characterizes the oscillatory regime at high temperatures.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 16","pages":"4066–4071 4066–4071"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpclett.5c00499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00499","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Open quantum systems that comply with the master equation and detailed balance decay in a non-oscillatory manner to thermal equilibrium. Beyond the weak coupling limit, systems that break microreversibility (e.g., in the presence of magnetic fields) violate detailed balance but still thermalize. We study the thermalization of these systems and show that a temperature increase produces novel exceptional points that indicate a sharp transition in the thermalization dynamics. A further temperature increase fuels oscillations of the energy level populations, even without quantum coherences. Moreover, the violation of detailed balance introduces an energy scale that characterizes the oscillatory regime at high temperatures.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.