Thermal Evolution of Organic Matter in Low-Maturity Shale: A Multimodal Nanoscale Investigation

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Yingjie Li, Tianhao Wu*, Junliang Zhao, Guorui Wang and Dongxiao Zhang*, 
{"title":"Thermal Evolution of Organic Matter in Low-Maturity Shale: A Multimodal Nanoscale Investigation","authors":"Yingjie Li,&nbsp;Tianhao Wu*,&nbsp;Junliang Zhao,&nbsp;Guorui Wang and Dongxiao Zhang*,&nbsp;","doi":"10.1021/acs.energyfuels.5c0036010.1021/acs.energyfuels.5c00360","DOIUrl":null,"url":null,"abstract":"<p >Systematic characterization of the nanoscale geomechanical and geochemical evolution of organic matter at elevated temperatures is critical for assessing the technical feasibility of <i>in situ</i> thermal methods in the development of low-maturity shale oil and gas. This study investigates the pyrolysis process of low-maturity, organic-rich shale from Yanchang Formation, focusing on thermal evolution in morphology, geochemistry, and geomechanical properties. The comprehensive analysis is performed through a series of sophisticated techniques, including thermogravimetric analysis coupled with thermogravimetric-Fourier transform infrared-gas chromatography/mass spectrometry (TG-FTIR-GC/MS), backscattered electron of the scanning electron microscopy (BSE-SEM), micro-Raman spectroscopy, atomic force microscopy-infrared spectroscopy (AFM-IR), and AFM PeakForce quantitative nanomechanics (PFQNM). Pyrolysis products evolve across three stages: water vapor dominates below 200 °C; hydrocarbons, CO<sub>2</sub>, and sulfur compounds release in the range of 200–650 °C; and carbonate decomposition drives CO<sub>2</sub> emissions above 650 °C. Heating induces significant morphological alterations, including surface shrinkage, pore collapse, and thermal cracks (notably above 400 °C). Geochemical analyses show that the differences in structure among solid bitumen, vitrinite, and inertinite decrease as the temperature increases, alongside detaching aliphatic side chains and oxygenated functional groups and increasing the degree of aromatization. Geomechanical properties, measured via AFM-PFQNM, demonstrate an initial decrease in Young’s modulus (25–250 °C) due to pore water loss, followed by modulus increase (250–600 °C) attributed to the aromaticity enhancement and matrix shrinkage. These insights advance the understanding of in situ thermal conversion processes, offering practical guidelines for enhancing hydrocarbon recovery from low-maturity shale reservoirs. The multidisciplinary approaches resolve the interplay among thermal, chemical, and mechanical dynamics in shale pyrolysis.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 16","pages":"7739–7750 7739–7750"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00360","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Systematic characterization of the nanoscale geomechanical and geochemical evolution of organic matter at elevated temperatures is critical for assessing the technical feasibility of in situ thermal methods in the development of low-maturity shale oil and gas. This study investigates the pyrolysis process of low-maturity, organic-rich shale from Yanchang Formation, focusing on thermal evolution in morphology, geochemistry, and geomechanical properties. The comprehensive analysis is performed through a series of sophisticated techniques, including thermogravimetric analysis coupled with thermogravimetric-Fourier transform infrared-gas chromatography/mass spectrometry (TG-FTIR-GC/MS), backscattered electron of the scanning electron microscopy (BSE-SEM), micro-Raman spectroscopy, atomic force microscopy-infrared spectroscopy (AFM-IR), and AFM PeakForce quantitative nanomechanics (PFQNM). Pyrolysis products evolve across three stages: water vapor dominates below 200 °C; hydrocarbons, CO2, and sulfur compounds release in the range of 200–650 °C; and carbonate decomposition drives CO2 emissions above 650 °C. Heating induces significant morphological alterations, including surface shrinkage, pore collapse, and thermal cracks (notably above 400 °C). Geochemical analyses show that the differences in structure among solid bitumen, vitrinite, and inertinite decrease as the temperature increases, alongside detaching aliphatic side chains and oxygenated functional groups and increasing the degree of aromatization. Geomechanical properties, measured via AFM-PFQNM, demonstrate an initial decrease in Young’s modulus (25–250 °C) due to pore water loss, followed by modulus increase (250–600 °C) attributed to the aromaticity enhancement and matrix shrinkage. These insights advance the understanding of in situ thermal conversion processes, offering practical guidelines for enhancing hydrocarbon recovery from low-maturity shale reservoirs. The multidisciplinary approaches resolve the interplay among thermal, chemical, and mechanical dynamics in shale pyrolysis.

Abstract Image

低成熟度页岩有机质热演化:多模态纳米尺度研究
系统表征高温下纳米尺度有机质的地质力学和地球化学演化,对于评估原位热法在低成熟度页岩油气开发中的技术可行性至关重要。研究了延长组低成熟度富有机质页岩的热解过程,重点研究了其热演化的形态、地球化学和地质力学特征。综合分析通过一系列复杂的技术进行,包括热重分析与热重-傅里叶变换红外-气相色谱/质谱分析(TG-FTIR-GC/MS),扫描电子显微镜(BSE-SEM)的背散射电子,微拉曼光谱,原子力显微镜-红外光谱(AFM- ir)和AFM峰力定量纳米力学(PFQNM)。热解产物分为三个阶段:水蒸气在200℃以下占主导地位;在200-650℃范围内释放碳氢化合物、二氧化碳和硫化合物;碳酸盐分解导致二氧化碳排放超过650°C。加热会引起显著的形态改变,包括表面收缩、孔隙塌陷和热裂纹(特别是在400°C以上)。地球化学分析表明,随着温度的升高,固体沥青、镜质组和惰质组的结构差异减小,脂肪侧链和含氧官能团分离,芳构化程度增加。通过AFM-PFQNM测量的地质力学特性表明,由于孔隙水损失,杨氏模量最初下降(25-250℃),随后由于芳香性增强和基质收缩,模量增加(250-600℃)。这些见解促进了对原位热转化过程的理解,为提高低成熟度页岩储层的油气采收率提供了实用指南。多学科方法解决了页岩热解过程中热动力学、化学动力学和力学动力学之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信