Tom Bradfer-Lawrence, Andrew D. M. Dobson, Tom Finch, Elisa Fuentes-Montemayor, Nick Hanley, Jason Matthiopoulos, Mary Nthambi, Katherine Simpson, Kevin Watts, Robin C. Whytock, Kirsty J. Park
{"title":"Spillovers and legacies of land management on temperate woodland biodiversity","authors":"Tom Bradfer-Lawrence, Andrew D. M. Dobson, Tom Finch, Elisa Fuentes-Montemayor, Nick Hanley, Jason Matthiopoulos, Mary Nthambi, Katherine Simpson, Kevin Watts, Robin C. Whytock, Kirsty J. Park","doi":"10.1038/s41559-025-02688-6","DOIUrl":null,"url":null,"abstract":"<p>Species distributions are a product of both current spatial configuration of habitats and legacies of historical land use. Here we explore current and historical drivers of species distributions, considering combined effects of spatial spillovers and temporal legacies, both within and between habitat types. We fit Bayesian hierarchical occupancy models to data on 373 species from four taxa (ground beetles, birds, vascular plants and small terrestrial mammals) from a chronosequence of 134 woodlands (10 to >250 years old) in temperate agricultural landscapes in the UK. Both spillovers and legacies affect species richness and community composition and, critically, these effects interact. Real-world combinations of spillovers and legacies result in different biodiversity responses compared with the individual factors in isolation. Woodland patches in landscapes with more old woodland and lower amounts of historical woodland loss tend to host more bird and plant but fewer beetle species. Failing to account for these drivers (in particular, legacy effects) gives a distorted view of habitat suitability. In consequence, the same management actions may result in unexpectedly different outcomes depending on the spatial and historical context within the landscape. A better understanding of spillovers and legacy effects on species distributions is required to design biodiversity-friendly, cost-effective land management.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"262 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02688-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species distributions are a product of both current spatial configuration of habitats and legacies of historical land use. Here we explore current and historical drivers of species distributions, considering combined effects of spatial spillovers and temporal legacies, both within and between habitat types. We fit Bayesian hierarchical occupancy models to data on 373 species from four taxa (ground beetles, birds, vascular plants and small terrestrial mammals) from a chronosequence of 134 woodlands (10 to >250 years old) in temperate agricultural landscapes in the UK. Both spillovers and legacies affect species richness and community composition and, critically, these effects interact. Real-world combinations of spillovers and legacies result in different biodiversity responses compared with the individual factors in isolation. Woodland patches in landscapes with more old woodland and lower amounts of historical woodland loss tend to host more bird and plant but fewer beetle species. Failing to account for these drivers (in particular, legacy effects) gives a distorted view of habitat suitability. In consequence, the same management actions may result in unexpectedly different outcomes depending on the spatial and historical context within the landscape. A better understanding of spillovers and legacy effects on species distributions is required to design biodiversity-friendly, cost-effective land management.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.