Harikrishnan KP, Ruijuan Xu, Kinnary Patel, Kevin J. Crust, Aarushi Khandelwal, Chenyu Zhang, Sergey Prosandeev, Hua Zhou, Yu-Tsun Shao, Laurent Bellaiche, Harold Y. Hwang, David A. Muller
{"title":"Electron ptychography reveals a ferroelectricity dominated by anion displacements","authors":"Harikrishnan KP, Ruijuan Xu, Kinnary Patel, Kevin J. Crust, Aarushi Khandelwal, Chenyu Zhang, Sergey Prosandeev, Hua Zhou, Yu-Tsun Shao, Laurent Bellaiche, Harold Y. Hwang, David A. Muller","doi":"10.1038/s41563-025-02205-x","DOIUrl":null,"url":null,"abstract":"<p>Sodium niobate, a lead-free ferroic material, hosts delicately balanced, competing order parameters, including ferroelectric states that can be stabilized by epitaxial strain. Here we show that the resulting macroscopic ferroelectricity exhibits an unconventional microscopic structure using multislice electron ptychography. This technique overcomes multiple scattering artefacts limiting conventional electron microscopy, enabling both lateral spatial resolution beyond the diffraction limit and recovery of three-dimensional structural information. These imaging capabilities allow us to separate the ferroelectric interior of the sample from the relaxed surface structure and identify the soft phonon mode and related structural distortions with picometre precision. Unlike conventional ferroelectric perovskites, we find that the polar distortion in this material involves minimal distortions of the cation sublattices and is instead dominated by anion displacements relative to the niobium sublattice. We establish limits on film thickness for interfacial octahedral rotation engineering and directly visualize a random octahedral rotation pattern, arising from the flat dispersion of the associated phonon mode.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"30 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02205-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium niobate, a lead-free ferroic material, hosts delicately balanced, competing order parameters, including ferroelectric states that can be stabilized by epitaxial strain. Here we show that the resulting macroscopic ferroelectricity exhibits an unconventional microscopic structure using multislice electron ptychography. This technique overcomes multiple scattering artefacts limiting conventional electron microscopy, enabling both lateral spatial resolution beyond the diffraction limit and recovery of three-dimensional structural information. These imaging capabilities allow us to separate the ferroelectric interior of the sample from the relaxed surface structure and identify the soft phonon mode and related structural distortions with picometre precision. Unlike conventional ferroelectric perovskites, we find that the polar distortion in this material involves minimal distortions of the cation sublattices and is instead dominated by anion displacements relative to the niobium sublattice. We establish limits on film thickness for interfacial octahedral rotation engineering and directly visualize a random octahedral rotation pattern, arising from the flat dispersion of the associated phonon mode.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.