Sergei Negria, Yinglong Jia, Noah A. Setterholm, Bhawna Barpuzary, John C. Chaput
{"title":"Scalable Multistep One-Pot Synthesis of Natural and Modified Nucleoside Triphosphates","authors":"Sergei Negria, Yinglong Jia, Noah A. Setterholm, Bhawna Barpuzary, John C. Chaput","doi":"10.1021/acs.joc.5c00268","DOIUrl":null,"url":null,"abstract":"Polymerases are among the most powerful tools in the molecular biology toolbox; however, access to large quantities of chemically modified nucleoside triphosphates for diverse applications remains hindered by the need for purification by high-performance liquid chromatography (HPLC). Here, we describe a scalable approach to modified nucleoside triphosphates that proceeds through a P(III)–P(V) mixed anhydride intermediate obtained from the coupling of a P(III) nucleoside phosphoramidite and a P(V) pyrene pyrophosphate reagent. The synthetic strategy allows the coupling, oxidation, and deprotection steps to proceed as stepwise transformations in a single one-pot reaction. The fully protected nucleoside triphosphates are purified by silica gel chromatography and converted to their desired compounds on scales exceeding those achievable by conventional strategies. The power of this approach is demonstrated through the synthesis of several natural and modified nucleoside triphosphates using protocols that are efficient and straightforward to perform.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.5c00268","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Polymerases are among the most powerful tools in the molecular biology toolbox; however, access to large quantities of chemically modified nucleoside triphosphates for diverse applications remains hindered by the need for purification by high-performance liquid chromatography (HPLC). Here, we describe a scalable approach to modified nucleoside triphosphates that proceeds through a P(III)–P(V) mixed anhydride intermediate obtained from the coupling of a P(III) nucleoside phosphoramidite and a P(V) pyrene pyrophosphate reagent. The synthetic strategy allows the coupling, oxidation, and deprotection steps to proceed as stepwise transformations in a single one-pot reaction. The fully protected nucleoside triphosphates are purified by silica gel chromatography and converted to their desired compounds on scales exceeding those achievable by conventional strategies. The power of this approach is demonstrated through the synthesis of several natural and modified nucleoside triphosphates using protocols that are efficient and straightforward to perform.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.