Michael Dowhyj, Kiran Kousar, Francis P. Lydiatt, Dimitri Chekulaev, Monika S. Walczak, Robert Temperton, James N.O’Shea, W. Stephen Walters, Andrew G. Thomas, Robert Lindsay
{"title":"Complexity at a Humid Interface: Throwing Fresh Light on Atmospheric Corrosion","authors":"Michael Dowhyj, Kiran Kousar, Francis P. Lydiatt, Dimitri Chekulaev, Monika S. Walczak, Robert Temperton, James N.O’Shea, W. Stephen Walters, Andrew G. Thomas, Robert Lindsay","doi":"10.1021/acsami.4c21013","DOIUrl":null,"url":null,"abstract":"Atmospheric corrosion of metals arising from exposure to water vapor is a pervasive problem across a wide range of practical scenarios, including nuclear material storage and historical artifact conservation. Frequently, it is hypothesized that this phenomenon becomes an issue once the number of monolayers of water growing atop a substrate is sufficient to facilitate corrosion chemistry, but supporting evidence remains scarce. We apply both near ambient pressure X-ray photoelectron spectroscopy and vibrational sum frequency spectroscopy to further elucidate the interaction of water vapor with zinc, a common engineering substrate for corrosion protection applications. Data acquired as a function of relative humidity indicate that water sorption is much more complex than expected, involving micropore filling and capillary condensation in the adventitious carbon layer covering the zinc surface. These results suggest that current mechanistic models for atmospheric corrosion, as well as other interfacial phenomena occurring in humid environments, require extensive revision and should embrace explicit consideration of the role of surface carbon contamination.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric corrosion of metals arising from exposure to water vapor is a pervasive problem across a wide range of practical scenarios, including nuclear material storage and historical artifact conservation. Frequently, it is hypothesized that this phenomenon becomes an issue once the number of monolayers of water growing atop a substrate is sufficient to facilitate corrosion chemistry, but supporting evidence remains scarce. We apply both near ambient pressure X-ray photoelectron spectroscopy and vibrational sum frequency spectroscopy to further elucidate the interaction of water vapor with zinc, a common engineering substrate for corrosion protection applications. Data acquired as a function of relative humidity indicate that water sorption is much more complex than expected, involving micropore filling and capillary condensation in the adventitious carbon layer covering the zinc surface. These results suggest that current mechanistic models for atmospheric corrosion, as well as other interfacial phenomena occurring in humid environments, require extensive revision and should embrace explicit consideration of the role of surface carbon contamination.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.