Greatly Enhanced Radiative Recombination at High Exciton Density in Acid-Treated 2D Alloy

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matej Sebek, Gang Wu, Zeng Wang, Michael Sullivan, Debbie Hwee Leng Seng, Xiao Di Su, Nguyen Thi Kim Thanh, Jinghua Teng
{"title":"Greatly Enhanced Radiative Recombination at High Exciton Density in Acid-Treated 2D Alloy","authors":"Matej Sebek, Gang Wu, Zeng Wang, Michael Sullivan, Debbie Hwee Leng Seng, Xiao Di Su, Nguyen Thi Kim Thanh, Jinghua Teng","doi":"10.1021/acsami.4c18618","DOIUrl":null,"url":null,"abstract":"Enhanced photoluminescence (PL) in transition metal dichalcogenides (TMDs) is critical for their application in optoelectronics. In this study, we report a 99 × PL enhancement in a superacid bis(trifluoromethane) sulfonimide (TFSI)-treated MoS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> alloy. The alloy’s optical bandgap is tunable by changing its stoichiometry, allowing for PL enhancement at tailored positions. The PL enhancement is robust even at high excitation power, overcoming the limitation of exciton–exciton annihilation observed in MoS<sub>2</sub>. Through molecular dynamics simulations and spectroscopic analysis, we demonstrate that the MoS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> monolayer inherently exhibits moderate strain, which shifts the van Hove singularity in the S-rich domain. Furthermore, density functional theory calculations reveal the absence of a pronounced van Hove feature in the alloy configuration. Our findings extend the range of materials amenable to superacid treatment and open new avenues for optoelectronic applications, particularly those requiring high excitation powers.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"9 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18618","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhanced photoluminescence (PL) in transition metal dichalcogenides (TMDs) is critical for their application in optoelectronics. In this study, we report a 99 × PL enhancement in a superacid bis(trifluoromethane) sulfonimide (TFSI)-treated MoS2(1–x)Se2x alloy. The alloy’s optical bandgap is tunable by changing its stoichiometry, allowing for PL enhancement at tailored positions. The PL enhancement is robust even at high excitation power, overcoming the limitation of exciton–exciton annihilation observed in MoS2. Through molecular dynamics simulations and spectroscopic analysis, we demonstrate that the MoS2(1–x)Se2x monolayer inherently exhibits moderate strain, which shifts the van Hove singularity in the S-rich domain. Furthermore, density functional theory calculations reveal the absence of a pronounced van Hove feature in the alloy configuration. Our findings extend the range of materials amenable to superacid treatment and open new avenues for optoelectronic applications, particularly those requiring high excitation powers.

Abstract Image

酸处理二维合金中高激子密度辐射复合的增强
过渡金属二硫族化合物(TMDs)的增强光致发光(PL)对其在光电子学中的应用至关重要。在这项研究中,我们报道了超强酸双(三氟甲烷)磺酰亚胺(TFSI)处理的MoS2(1-x)Se2x合金的99倍PL增强。该合金的光学带隙可通过改变其化学计量来调节,从而允许在定制位置增强PL。即使在高激发功率下,PL增强也很强大,克服了在MoS2中观察到的激子-激子湮灭的限制。通过分子动力学模拟和光谱分析,我们证明了MoS2(1-x)Se2x单层固有地表现出适度的应变,这改变了富s域的van Hove奇点。此外,密度泛函理论计算表明,在合金结构中没有明显的范霍夫特征。我们的发现扩展了适合超强酸处理的材料范围,并为光电应用开辟了新的途径,特别是那些需要高激发功率的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信