A data-driven platform for automated characterization of polymer electrolytes

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-04-23 DOI:10.1016/j.matt.2025.102129
Michael A. Stolberg, Jeffrey Lopez, Sawyer D. Cawthern, Abraham Herzog-Arbeitman, Ha-Kyung Kwon, Daniel Schweigert, Abraham Anapolosky, Brian D. Storey, Jeremiah A. Johnson, Yang Shao-Horn
{"title":"A data-driven platform for automated characterization of polymer electrolytes","authors":"Michael A. Stolberg, Jeffrey Lopez, Sawyer D. Cawthern, Abraham Herzog-Arbeitman, Ha-Kyung Kwon, Daniel Schweigert, Abraham Anapolosky, Brian D. Storey, Jeremiah A. Johnson, Yang Shao-Horn","doi":"10.1016/j.matt.2025.102129","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries aid decarbonization by enabling electric vehicles and renewable energy generation, but these applications put increasing demands on the energy density, safety, and cost of batteries. Polymer electrolytes could improve battery safety but currently do not have sufficient ionic conductivity for ambient operation. To address this challenge, we developed a high-throughput platform to increase the speed and scale of polymer electrolyte research, enabling the acquisition of data for over 60 samples per researcher hour. We utilized automated formulation and characterization operations, including electrochemical impedance spectroscopy with <em>in situ</em> thickness measurements, to perform a comparison of lithium and sodium salts in poly(ethylene oxide). Our study provides a high-quality, unified reference dataset for the community and greatly expands available data for sodium-based electrolytes. Secondly, our large dataset allows us to find that the local minima in glass transition temperature that corresponds to maximum ionic conductivity is a colligative property independent of either anion or cation chemistry.","PeriodicalId":388,"journal":{"name":"Matter","volume":"128 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102129","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries aid decarbonization by enabling electric vehicles and renewable energy generation, but these applications put increasing demands on the energy density, safety, and cost of batteries. Polymer electrolytes could improve battery safety but currently do not have sufficient ionic conductivity for ambient operation. To address this challenge, we developed a high-throughput platform to increase the speed and scale of polymer electrolyte research, enabling the acquisition of data for over 60 samples per researcher hour. We utilized automated formulation and characterization operations, including electrochemical impedance spectroscopy with in situ thickness measurements, to perform a comparison of lithium and sodium salts in poly(ethylene oxide). Our study provides a high-quality, unified reference dataset for the community and greatly expands available data for sodium-based electrolytes. Secondly, our large dataset allows us to find that the local minima in glass transition temperature that corresponds to maximum ionic conductivity is a colligative property independent of either anion or cation chemistry.

Abstract Image

一个数据驱动的平台,用于聚合物电解质的自动表征
锂离子电池可用于电动汽车和可再生能源发电,从而有助于去碳化,但这些应用对电池的能量密度、安全性和成本提出了越来越高的要求。聚合物电解质可以提高电池的安全性,但目前还没有足够的离子导电性来满足环境操作的要求。为了应对这一挑战,我们开发了一个高通量平台,以提高聚合物电解质研究的速度和规模,使研究人员每小时能够采集 60 多个样品的数据。我们利用自动配制和表征操作(包括电化学阻抗光谱和原位厚度测量)对聚环氧乙烷中的锂盐和钠盐进行了比较。我们的研究为业界提供了一个高质量的统一参考数据集,并大大扩展了钠基电解质的可用数据。其次,我们的大型数据集让我们发现,与最大离子电导率相对应的玻璃化转变温度的局部最小值是一种与阴离子或阳离子化学性质无关的共轭特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信