Bioinspired Durable Mechanical-Bioelectrical Dual-Modal Sensors Enabled by Mixed Ion-Electron Conduction and Mechanical Interlocking for Multifunctional Sensing

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongjing Zhang, Shuai Wang, Yongju Gao, Meili Xia, Anh Tuan Hoang, Wenjing Guo, Fuqin Wu, Pengmin Liu, Duxia Cao, Songfang Zhao, Guoqiang Li, Yan Li, Huanyu Cheng, Jong-Hyun Ahn
{"title":"Bioinspired Durable Mechanical-Bioelectrical Dual-Modal Sensors Enabled by Mixed Ion-Electron Conduction and Mechanical Interlocking for Multifunctional Sensing","authors":"Yongjing Zhang, Shuai Wang, Yongju Gao, Meili Xia, Anh Tuan Hoang, Wenjing Guo, Fuqin Wu, Pengmin Liu, Duxia Cao, Songfang Zhao, Guoqiang Li, Yan Li, Huanyu Cheng, Jong-Hyun Ahn","doi":"10.1002/adfm.202501122","DOIUrl":null,"url":null,"abstract":"Skin-like robust materials with prominent sensing performance have potential applications in flexible bioelectronics. However, it remains challenging to achieve mutually exclusive properties simultaneously including low interfacial impedance, high stretchability, sensitivity, and electrical resilience. Herein, a material and structure design concept of mixed ion-electron conduction and mechanical interlocking structure is adopted to fabricate high-performance mechanical-bioelectrical dual-modal composites with large stretchability, excellent mechanoelectrical stability, low interfacial impedance, and good biocompatibility. Flower-like conductive metal-organic frameworks (cMOFs) with enhanced conductivity through the overlapped level of metal-ligand orbital are assembled, which bridge carbon nanotubes (denoted as cMOFs-<i>b</i>-CNTs). Then, precursor of poly(styrene-<i>block</i>-butadiene<i>-block</i>-styrene)/ionic liquid penetrates the pores and cavities in cMOFs-<i>b</i>-CNTs-based network fabricated via filtration process, creating a semi-embedded structure via mechanical interlocking. Thus, the mixed ion-electron conduction and semi-embedded structure endow the as-prepared composites with a low interfacial impedance (51.60/28.90 kΩ at 10/100 Hz), wide sensing range (473%), high sensitivity (2195.29), rapid response/recovery time (60/85 ms), low limit of detection (0.05%), and excellent durability (&gt;5000 cycles to 50% strain). Demonstrations of multifunctional mechanical-bioelectrical dual-modal sensors for in vivo/vitro monitoring physiological motions, electrophysiological activities, and urinary bladder activities validate the possibility for practical uses in biomedical research areas. This concept creates opportunities for the construction of durable skin-like sensing materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501122","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin-like robust materials with prominent sensing performance have potential applications in flexible bioelectronics. However, it remains challenging to achieve mutually exclusive properties simultaneously including low interfacial impedance, high stretchability, sensitivity, and electrical resilience. Herein, a material and structure design concept of mixed ion-electron conduction and mechanical interlocking structure is adopted to fabricate high-performance mechanical-bioelectrical dual-modal composites with large stretchability, excellent mechanoelectrical stability, low interfacial impedance, and good biocompatibility. Flower-like conductive metal-organic frameworks (cMOFs) with enhanced conductivity through the overlapped level of metal-ligand orbital are assembled, which bridge carbon nanotubes (denoted as cMOFs-b-CNTs). Then, precursor of poly(styrene-block-butadiene-block-styrene)/ionic liquid penetrates the pores and cavities in cMOFs-b-CNTs-based network fabricated via filtration process, creating a semi-embedded structure via mechanical interlocking. Thus, the mixed ion-electron conduction and semi-embedded structure endow the as-prepared composites with a low interfacial impedance (51.60/28.90 kΩ at 10/100 Hz), wide sensing range (473%), high sensitivity (2195.29), rapid response/recovery time (60/85 ms), low limit of detection (0.05%), and excellent durability (>5000 cycles to 50% strain). Demonstrations of multifunctional mechanical-bioelectrical dual-modal sensors for in vivo/vitro monitoring physiological motions, electrophysiological activities, and urinary bladder activities validate the possibility for practical uses in biomedical research areas. This concept creates opportunities for the construction of durable skin-like sensing materials.

Abstract Image

由混合离子-电子传导和机械联锁实现多功能传感的生物启发耐用机械-生物电双峰传感器
具有优异传感性能的类皮肤坚固材料在柔性生物电子学中具有潜在的应用前景。然而,同时实现低界面阻抗、高拉伸性、灵敏度和电回弹性等互斥特性仍然具有挑战性。本文采用混合离子电子传导和机械联锁结构的材料结构设计理念,制备了具有大拉伸性、优异的机电稳定性、低界面阻抗和良好生物相容性的高性能机械-生物电双峰复合材料。通过金属-配体轨道的重叠层,组装了导电性增强的花状导电金属有机框架(cMOFs),其桥接碳纳米管(表示为cMOFs-b- cnts)。然后,聚(苯乙烯-丁二烯-嵌段-苯乙烯)/离子液体前驱体渗透到通过过滤工艺制备的cmofs -b- cnts网络的孔隙和空腔中,通过机械联锁形成半嵌入式结构。因此,混合离子-电子传导和半嵌入结构使所制备的复合材料具有低界面阻抗(10/100 Hz时为51.60/28.90 kΩ)、宽传感范围(473%)、高灵敏度(2195.29)、快速响应/恢复时间(60/85 ms)、低检测限(0.05%)和优异的耐久性(>;5000次循环至50%应变)。用于体内/体外监测生理运动、电生理活动和膀胱活动的多功能机械-生物电双模传感器的演示验证了在生物医学研究领域实际应用的可能性。这一概念为构建耐用的皮肤传感材料创造了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信