Unveiling the Key Factors: Mn/Fe Ratio, Distribution Homogeneity, and Electronic Conductivity of Na4MnxFe3-x(PO4)2P2O7 for Practical Sodium-Ion Batteries
{"title":"Unveiling the Key Factors: Mn/Fe Ratio, Distribution Homogeneity, and Electronic Conductivity of Na4MnxFe3-x(PO4)2P2O7 for Practical Sodium-Ion Batteries","authors":"Xu Bao, Yong Wang, Guokang Chen, Nannan Qin, Xuan Wang, Yijing He, Yuke Shen, Liwei Chen, Yixiao Zhang, Guijia Cui, Zi-Feng Ma, Xiao-Zhen Liao","doi":"10.1002/adfm.202506242","DOIUrl":null,"url":null,"abstract":"High Mn content Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> materials are attractive cathodes for sodium-ion batteries with a higher operating voltage than that of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. However, the poor intrinsic electronic conductivity and the Jahn–Teller distortion caused by Mn<sup>3+</sup> still make it difficult to obtain satisfactory Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> up to now. In this work, Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>/C-CNT is successfully synthesized with a uniformly distributed Mn/Fe structure using Mn/Fe oxalate coprecipitates as precursors. The Na<sub>4</sub>Mn<sub>1.7</sub>Fe<sub>1.3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>/C-CNT sample with optimal Mn/Fe ratio and enhanced electronic conductivity exhibits a high mid-discharge voltage of 3.70 V versus Na/Na<sup>+</sup> with a reversible capacity of 111 mAh g<sup>−1</sup> at 0.05C, and also excellent rate capability (89.4 mAh g<sup>−1</sup> at 20C) and superior cycling stability (90.4% capacity retention after 1000 cycles at 0.5C). An appropriate Mn/Fe ratio and uniform Mn/Fe distribution in the Na<sub>4</sub>Mn<sub>1.7</sub>Fe<sub>1.3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> structure are critical to suppress the Jahn–Teller distortion of Mn<sup>3+</sup>. DFT calculation indicates the necessity of improving its electronic conductivity compared to that of conventional Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. This work opens up valuable insights and strategies to design novel Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathodes for practical sodium-ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"41 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506242","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High Mn content Na4MnxFe3-x(PO4)2P2O7 materials are attractive cathodes for sodium-ion batteries with a higher operating voltage than that of Na4Fe3(PO4)2P2O7. However, the poor intrinsic electronic conductivity and the Jahn–Teller distortion caused by Mn3+ still make it difficult to obtain satisfactory Na4MnxFe3-x(PO4)2P2O7 up to now. In this work, Na4MnxFe3-x(PO4)2P2O7/C-CNT is successfully synthesized with a uniformly distributed Mn/Fe structure using Mn/Fe oxalate coprecipitates as precursors. The Na4Mn1.7Fe1.3(PO4)2P2O7/C-CNT sample with optimal Mn/Fe ratio and enhanced electronic conductivity exhibits a high mid-discharge voltage of 3.70 V versus Na/Na+ with a reversible capacity of 111 mAh g−1 at 0.05C, and also excellent rate capability (89.4 mAh g−1 at 20C) and superior cycling stability (90.4% capacity retention after 1000 cycles at 0.5C). An appropriate Mn/Fe ratio and uniform Mn/Fe distribution in the Na4Mn1.7Fe1.3(PO4)2P2O7 structure are critical to suppress the Jahn–Teller distortion of Mn3+. DFT calculation indicates the necessity of improving its electronic conductivity compared to that of conventional Na4Fe3(PO4)2P2O7. This work opens up valuable insights and strategies to design novel Na4MnxFe3-x(PO4)2P2O7 cathodes for practical sodium-ion batteries.
高锰含量的Na4MnxFe3-x(PO4)2P2O7材料具有比Na4Fe3(PO4)2P2O7材料更高的工作电压,是钠离子电池极具吸引力的材料。然而,由于Mn3+的本征电子导电性差和引起的Jahn-Teller畸变,至今仍难以获得满意的Na4MnxFe3-x(PO4)2P2O7。本文以草酸锰铁共沉淀物为前驱体,成功合成了具有均匀分布Mn/Fe结构的Na4MnxFe3-x(PO4)2P2O7/C-CNT。Na4Mn1.7Fe1.3(PO4)2P2O7/C-CNT样品具有最佳的Mn/Fe比和增强的电子导电性,相对于Na/Na+具有3.70 V的高中放电电压,在0.05C时具有111 mAh g−1的可逆容量,并且具有优异的倍率容量(20C时89.4 mAh g−1)和优异的循环稳定性(0.5C下1000次循环后容量保留率为90.4%)。Na4Mn1.7Fe1.3(PO4)2P2O7结构中适当的Mn/Fe比和均匀的Mn/Fe分布是抑制Mn3+ Jahn-Teller畸变的关键。DFT计算表明,与传统的Na4Fe3(PO4)2P2O7相比,有必要提高其电子导电性。这项工作为设计用于实用钠离子电池的新型Na4MnxFe3-x(PO4)2P2O7阴极提供了有价值的见解和策略。
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.