Unveiling the Key Factors: Mn/Fe Ratio, Distribution Homogeneity, and Electronic Conductivity of Na4MnxFe3-x(PO4)2P2O7 for Practical Sodium-Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xu Bao, Yong Wang, Guokang Chen, Nannan Qin, Xuan Wang, Yijing He, Yuke Shen, Liwei Chen, Yixiao Zhang, Guijia Cui, Zi-Feng Ma, Xiao-Zhen Liao
{"title":"Unveiling the Key Factors: Mn/Fe Ratio, Distribution Homogeneity, and Electronic Conductivity of Na4MnxFe3-x(PO4)2P2O7 for Practical Sodium-Ion Batteries","authors":"Xu Bao, Yong Wang, Guokang Chen, Nannan Qin, Xuan Wang, Yijing He, Yuke Shen, Liwei Chen, Yixiao Zhang, Guijia Cui, Zi-Feng Ma, Xiao-Zhen Liao","doi":"10.1002/adfm.202506242","DOIUrl":null,"url":null,"abstract":"High Mn content Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> materials are attractive cathodes for sodium-ion batteries with a higher operating voltage than that of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. However, the poor intrinsic electronic conductivity and the Jahn–Teller distortion caused by Mn<sup>3+</sup> still make it difficult to obtain satisfactory Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> up to now. In this work, Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>/C-CNT is successfully synthesized with a uniformly distributed Mn/Fe structure using Mn/Fe oxalate coprecipitates as precursors. The Na<sub>4</sub>Mn<sub>1.7</sub>Fe<sub>1.3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>/C-CNT sample with optimal Mn/Fe ratio and enhanced electronic conductivity exhibits a high mid-discharge voltage of 3.70 V versus Na/Na<sup>+</sup> with a reversible capacity of 111 mAh g<sup>−1</sup> at 0.05C, and also excellent rate capability (89.4 mAh g<sup>−1</sup> at 20C) and superior cycling stability (90.4% capacity retention after 1000 cycles at 0.5C). An appropriate Mn/Fe ratio and uniform Mn/Fe distribution in the Na<sub>4</sub>Mn<sub>1.7</sub>Fe<sub>1.3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> structure are critical to suppress the Jahn–Teller distortion of Mn<sup>3+</sup>. DFT calculation indicates the necessity of improving its electronic conductivity compared to that of conventional Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. This work opens up valuable insights and strategies to design novel Na<sub>4</sub>Mn<sub>x</sub>Fe<sub>3-x</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathodes for practical sodium-ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"41 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506242","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High Mn content Na4MnxFe3-x(PO4)2P2O7 materials are attractive cathodes for sodium-ion batteries with a higher operating voltage than that of Na4Fe3(PO4)2P2O7. However, the poor intrinsic electronic conductivity and the Jahn–Teller distortion caused by Mn3+ still make it difficult to obtain satisfactory Na4MnxFe3-x(PO4)2P2O7 up to now. In this work, Na4MnxFe3-x(PO4)2P2O7/C-CNT is successfully synthesized with a uniformly distributed Mn/Fe structure using Mn/Fe oxalate coprecipitates as precursors. The Na4Mn1.7Fe1.3(PO4)2P2O7/C-CNT sample with optimal Mn/Fe ratio and enhanced electronic conductivity exhibits a high mid-discharge voltage of 3.70 V versus Na/Na+ with a reversible capacity of 111 mAh g−1 at 0.05C, and also excellent rate capability (89.4 mAh g−1 at 20C) and superior cycling stability (90.4% capacity retention after 1000 cycles at 0.5C). An appropriate Mn/Fe ratio and uniform Mn/Fe distribution in the Na4Mn1.7Fe1.3(PO4)2P2O7 structure are critical to suppress the Jahn–Teller distortion of Mn3+. DFT calculation indicates the necessity of improving its electronic conductivity compared to that of conventional Na4Fe3(PO4)2P2O7. This work opens up valuable insights and strategies to design novel Na4MnxFe3-x(PO4)2P2O7 cathodes for practical sodium-ion batteries.

Abstract Image

揭示实用钠离子电池用Na4MnxFe3-x(PO4)2P2O7的Mn/Fe比、分布均匀性和电导率等关键因素
高锰含量的Na4MnxFe3-x(PO4)2P2O7材料具有比Na4Fe3(PO4)2P2O7材料更高的工作电压,是钠离子电池极具吸引力的材料。然而,由于Mn3+的本征电子导电性差和引起的Jahn-Teller畸变,至今仍难以获得满意的Na4MnxFe3-x(PO4)2P2O7。本文以草酸锰铁共沉淀物为前驱体,成功合成了具有均匀分布Mn/Fe结构的Na4MnxFe3-x(PO4)2P2O7/C-CNT。Na4Mn1.7Fe1.3(PO4)2P2O7/C-CNT样品具有最佳的Mn/Fe比和增强的电子导电性,相对于Na/Na+具有3.70 V的高中放电电压,在0.05C时具有111 mAh g−1的可逆容量,并且具有优异的倍率容量(20C时89.4 mAh g−1)和优异的循环稳定性(0.5C下1000次循环后容量保留率为90.4%)。Na4Mn1.7Fe1.3(PO4)2P2O7结构中适当的Mn/Fe比和均匀的Mn/Fe分布是抑制Mn3+ Jahn-Teller畸变的关键。DFT计算表明,与传统的Na4Fe3(PO4)2P2O7相比,有必要提高其电子导电性。这项工作为设计用于实用钠离子电池的新型Na4MnxFe3-x(PO4)2P2O7阴极提供了有价值的见解和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信