Marie H. Solheim, Sima Stroganov, Weiyi Chen, P. Sicilia Subagia, Corinna A. Bauder, Daria Wnuk-Lipinski, Almudena Del Río-Martín, Tamara Sotelo-Hitschfeld, Cait A. Beddows, Paul Klemm, Garron T. Dodd, Sofia Lundh, Anna Secher, F. Thomas Wunderlich, Lukas Steuernagel, Jens C. Brüning
{"title":"Hypothalamic PNOC/NPY neurons constitute mediators of leptin-controlled energy homeostasis","authors":"Marie H. Solheim, Sima Stroganov, Weiyi Chen, P. Sicilia Subagia, Corinna A. Bauder, Daria Wnuk-Lipinski, Almudena Del Río-Martín, Tamara Sotelo-Hitschfeld, Cait A. Beddows, Paul Klemm, Garron T. Dodd, Sofia Lundh, Anna Secher, F. Thomas Wunderlich, Lukas Steuernagel, Jens C. Brüning","doi":"10.1016/j.cell.2025.04.001","DOIUrl":null,"url":null,"abstract":"Leptin acts in the brain to suppress appetite, yet the responsible neurocircuitries underlying leptin’s anorectic effect are incompletely defined. Prepronociceptin (PNOC)-expressing neurons mediate diet-induced hyperphagia and weight gain in mice. Here, we show that leptin regulates appetite and body weight via PNOC neurons, and that loss of leptin receptor (<em>Lepr</em>) expression in PNOC-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) causes hyperphagia and obesity. Restoring <em>Lepr</em> expression in PNOC neurons on a <em>Lepr</em>-null obese background substantially reduces body weight. <em>Lepr</em> inactivation in PNOC neurons increases neuropeptide Y (<em>Npy</em>) expression in a subset of hypothalamic PNOC neurons that do not express agouti-related peptide (<em>Agrp</em>). Selective chemogenetic activation of PNOC/NPY neurons promotes feeding to the same extent as activating all PNOC<sup>ARC</sup> neurons, and overexpression of <em>Npy</em> in PNOC<sup>ARC</sup> neurons promotes hyperphagia and obesity. Thus, we introduce PNOC/NPY<sup>ARC</sup> neurons as an additional critical mediator of leptin action and as a promising target for obesity therapeutics.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"17 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leptin acts in the brain to suppress appetite, yet the responsible neurocircuitries underlying leptin’s anorectic effect are incompletely defined. Prepronociceptin (PNOC)-expressing neurons mediate diet-induced hyperphagia and weight gain in mice. Here, we show that leptin regulates appetite and body weight via PNOC neurons, and that loss of leptin receptor (Lepr) expression in PNOC-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) causes hyperphagia and obesity. Restoring Lepr expression in PNOC neurons on a Lepr-null obese background substantially reduces body weight. Lepr inactivation in PNOC neurons increases neuropeptide Y (Npy) expression in a subset of hypothalamic PNOC neurons that do not express agouti-related peptide (Agrp). Selective chemogenetic activation of PNOC/NPY neurons promotes feeding to the same extent as activating all PNOCARC neurons, and overexpression of Npy in PNOCARC neurons promotes hyperphagia and obesity. Thus, we introduce PNOC/NPYARC neurons as an additional critical mediator of leptin action and as a promising target for obesity therapeutics.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.