{"title":"Titanium-Doped BaZrS3 Chalcogenide Perovskite for Photovoltaic Applications: Structural, Optical, and Electrical Properties","authors":"Adam Musa, Monica Katiyar","doi":"10.1021/acs.inorgchem.4c04620","DOIUrl":null,"url":null,"abstract":"Chalcogenide perovskites, such as BaZrS<sub>3</sub>, have emerged as promising alternatives to lead-based halide perovskites, addressing toxicity and instability concerns while maintaining strong near-band-edge absorption and high carrier mobility. In this study, titanium-doped BaZrS<sub>3</sub> (BaZr<sub>1</sub><sub>–</sub><sub><i>x</i></sub>Ti<sub><i>x</i></sub>S<sub>3</sub>, <i>x</i> = 0–0.08) was synthesized via citric acid–based sol–gel method, followed by sulfurization at 1050 °C. Structural characterization confirmed the a single-phase distorted orthorhombic perovskite without phase separation, even at 8% Ti doping. Raman spectroscopy revealed no significant structural disorder induced by Ti substitution, while SEM/TEM analyses demonstrated a uniform morphology and pseudocubicnanoparticles (∼200 nm) in size. XPS validated the presence of Ba<sup>2+</sup>, Zr<sup>4+</sup>and S<sup>2–</sup> in their expected oxidation states. UV–Vis spectroscopy showed a tunable bandgap reduction from 1.8 eV (pristine) to 1.2 eV (<i>x</i> = 0.08), aligning with the Shockley–Queisser limit. Hall effect measurements revealed enhanced carrier mobility (27.4 cm<sup>2</sup>/V·s at <i>x</i> = 0.08) and consistent n-type carrier concentrations (∼10<sup>16</sup> cm<sup>–3</sup>), indicating improved conductivity. The thermogravimetric analysis further confirmed exceptional thermal stability (<2% Mass loss up to 800 °C). These results underscore the efficacy of Ti doping in optimizing optoelectronic properties while preserving structural integrity and stability. Collectively, this work positions Ti-doped BaZrS<sub>3</sub> as a scalable, lead-free perovskite candidate for high-efficiency photovoltaic applications.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04620","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcogenide perovskites, such as BaZrS3, have emerged as promising alternatives to lead-based halide perovskites, addressing toxicity and instability concerns while maintaining strong near-band-edge absorption and high carrier mobility. In this study, titanium-doped BaZrS3 (BaZr1–xTixS3, x = 0–0.08) was synthesized via citric acid–based sol–gel method, followed by sulfurization at 1050 °C. Structural characterization confirmed the a single-phase distorted orthorhombic perovskite without phase separation, even at 8% Ti doping. Raman spectroscopy revealed no significant structural disorder induced by Ti substitution, while SEM/TEM analyses demonstrated a uniform morphology and pseudocubicnanoparticles (∼200 nm) in size. XPS validated the presence of Ba2+, Zr4+and S2– in their expected oxidation states. UV–Vis spectroscopy showed a tunable bandgap reduction from 1.8 eV (pristine) to 1.2 eV (x = 0.08), aligning with the Shockley–Queisser limit. Hall effect measurements revealed enhanced carrier mobility (27.4 cm2/V·s at x = 0.08) and consistent n-type carrier concentrations (∼1016 cm–3), indicating improved conductivity. The thermogravimetric analysis further confirmed exceptional thermal stability (<2% Mass loss up to 800 °C). These results underscore the efficacy of Ti doping in optimizing optoelectronic properties while preserving structural integrity and stability. Collectively, this work positions Ti-doped BaZrS3 as a scalable, lead-free perovskite candidate for high-efficiency photovoltaic applications.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.