Assembly of Low-Dose Nonionic Surfactant Hydrophobic Functional Groups with Extracellular Polymeric Substances to Destabilize Waste-Activated Sludge and Improve Biomass Energy Recovery
Qi Song, Yu Hua, Shuxian Chen, Xiaoguang Liu, Xiaohu Dai
{"title":"Assembly of Low-Dose Nonionic Surfactant Hydrophobic Functional Groups with Extracellular Polymeric Substances to Destabilize Waste-Activated Sludge and Improve Biomass Energy Recovery","authors":"Qi Song, Yu Hua, Shuxian Chen, Xiaoguang Liu, Xiaohu Dai","doi":"10.1021/acs.est.5c00196","DOIUrl":null,"url":null,"abstract":"To destabilize the microstructure resulting from microorganism physiology and substance combination in waste-activated sludge (WAS), this study proposes a novel approach by employing nonionic surfactants for pretreatment with a specific focus on alkyl polyglucosides (APG). Inspired by the enhanced dispersibility and targeted hydrophobic interactions of surfactants at low doses, this approach strategically applies APG pretreatment at 0.05 and 0.10 g/g TS, which boosted biogas production by 49.7 and 62.9%, respectively, compared to the control group. The analysis showed that the assembly of APG hydrophobic functional groups with hydrophobic functional groups in EPS enhanced the surface free energy of sludge particles and led to the evacuation of TB-EPS. Microbial diversity analysis reveals shifts in bacteria and archaea in response to APG pretreatment, significant as bacteria <i>Azonexus</i>, <i>Syntrophomonas</i>, <i>Lutispora</i>, and archaea <i>Methanosarcina</i> emerge as new dominant genera. When adding a low dose of APG (<0.10 g/g TS), the destabilization of sludge microstructure (weakening nonfunctional binding between sludge particles and biological enzymes) led to a significant increase in the freedom and activity of enzymes involved in methane metabolism pathways. This study can provide valuable insights for surface interface regulation and efficient biomass energy recovery of complex organic waste.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"18 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c00196","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
To destabilize the microstructure resulting from microorganism physiology and substance combination in waste-activated sludge (WAS), this study proposes a novel approach by employing nonionic surfactants for pretreatment with a specific focus on alkyl polyglucosides (APG). Inspired by the enhanced dispersibility and targeted hydrophobic interactions of surfactants at low doses, this approach strategically applies APG pretreatment at 0.05 and 0.10 g/g TS, which boosted biogas production by 49.7 and 62.9%, respectively, compared to the control group. The analysis showed that the assembly of APG hydrophobic functional groups with hydrophobic functional groups in EPS enhanced the surface free energy of sludge particles and led to the evacuation of TB-EPS. Microbial diversity analysis reveals shifts in bacteria and archaea in response to APG pretreatment, significant as bacteria Azonexus, Syntrophomonas, Lutispora, and archaea Methanosarcina emerge as new dominant genera. When adding a low dose of APG (<0.10 g/g TS), the destabilization of sludge microstructure (weakening nonfunctional binding between sludge particles and biological enzymes) led to a significant increase in the freedom and activity of enzymes involved in methane metabolism pathways. This study can provide valuable insights for surface interface regulation and efficient biomass energy recovery of complex organic waste.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.