Hierarchical Coordinated Optimisation of the Restoration Decision-Making for Multi-Voltage-Level Power Systems With Wind Power Integration

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yansong Bai, Xueping Gu, Shaoyan Li, Tong Liu, Yingshan Wang
{"title":"Hierarchical Coordinated Optimisation of the Restoration Decision-Making for Multi-Voltage-Level Power Systems With Wind Power Integration","authors":"Yansong Bai,&nbsp;Xueping Gu,&nbsp;Shaoyan Li,&nbsp;Tong Liu,&nbsp;Yingshan Wang","doi":"10.1049/gtd2.70075","DOIUrl":null,"url":null,"abstract":"<p>In power system restoration (PSR), networks with various voltage levels have different decision-making constraints and restoration characteristics. Specifically, the restoration plan for the lower voltage level network is more adaptable to uncertainty of wind power output, owing to its greater flexibility. First, the restoration scheme decision-making is divided into two parts for the main network level (MNL) and the regional network level (RNL) respectively, according to the voltage levels. Second, a hierarchical coordinated optimisation model is established based on a two-stage framework. In the first stage, the plants/lines restoration sequence of the MNL and the subsystem partitioning scheme are determined. Furthermore, the plants/lines restoration sequence of the RNL and the restoration power scheduling scheme of the MNL and RNL are obtained in the second stage of optimisation, which can be flexibly adjusted to adapt to uncertain wind power outputs. The coordination and allocation of frequency regulation resources across subsystems are considered. Finally, the nested column and constraint generation algorithm is applied to solve the two-stage robust model. Case studies using the IEEE standard and a provincial system in China show that the algorithm converges in 2–3 iterations. Compared to non-hierarchical approaches, the proposed method improves cumulative restored energy by 2% and 5.3% in case 1 and case 2, respectively, while maintaining robustness against wind power uncertainty, highlighting its effectiveness in multi-level PSR.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In power system restoration (PSR), networks with various voltage levels have different decision-making constraints and restoration characteristics. Specifically, the restoration plan for the lower voltage level network is more adaptable to uncertainty of wind power output, owing to its greater flexibility. First, the restoration scheme decision-making is divided into two parts for the main network level (MNL) and the regional network level (RNL) respectively, according to the voltage levels. Second, a hierarchical coordinated optimisation model is established based on a two-stage framework. In the first stage, the plants/lines restoration sequence of the MNL and the subsystem partitioning scheme are determined. Furthermore, the plants/lines restoration sequence of the RNL and the restoration power scheduling scheme of the MNL and RNL are obtained in the second stage of optimisation, which can be flexibly adjusted to adapt to uncertain wind power outputs. The coordination and allocation of frequency regulation resources across subsystems are considered. Finally, the nested column and constraint generation algorithm is applied to solve the two-stage robust model. Case studies using the IEEE standard and a provincial system in China show that the algorithm converges in 2–3 iterations. Compared to non-hierarchical approaches, the proposed method improves cumulative restored energy by 2% and 5.3% in case 1 and case 2, respectively, while maintaining robustness against wind power uncertainty, highlighting its effectiveness in multi-level PSR.

Abstract Image

风电一体化多电压级电力系统恢复决策的层次协调优化
在电力系统恢复(PSR)中,不同电压水平的电网具有不同的决策约束和恢复特性。其中,低压级电网的恢复方案具有更大的灵活性,更能适应风电输出的不确定性。首先,根据电压等级将恢复方案决策分为主网级(MNL)和区域网级(RNL)两部分;其次,建立了基于两阶段框架的分层协调优化模型。首先确定MNL的株/系恢复序列和分系统划分方案;在第二阶段优化中,得到了可灵活调整的RNL的厂线恢复顺序以及MNL和RNL的恢复功率调度方案,以适应不确定的风电输出。考虑了各子系统间调频资源的协调与分配。最后,采用嵌套列约束生成算法求解两阶段鲁棒模型。使用IEEE标准和中国一个省级系统的实例研究表明,该算法在2-3次迭代中收敛。与非分层方法相比,该方法在情形1和情形2中分别将累积恢复能量提高了2%和5.3%,同时保持了对风电不确定性的鲁棒性,突出了其在多级PSR中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信