Neuroimmune Pain and Its Manipulation by Pathogens

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Kevin W. Lozo, Athena Aktipis, Joe Alcock
{"title":"Neuroimmune Pain and Its Manipulation by Pathogens","authors":"Kevin W. Lozo,&nbsp;Athena Aktipis,&nbsp;Joe Alcock","doi":"10.1111/eva.70098","DOIUrl":null,"url":null,"abstract":"<p>Recent studies highlight extensive crosstalk that exists between sensory neurons responsible for pain and the immune system. Cutaneous pain neurons detect harmful microbes, recruit immune cells, and produce anticipatory immunity in nearby tissues. These complementary systems generally protect hosts from infections. At the same time, neuroimmune pain is vulnerable to manipulation. Some pathogens evade immunity activated by nociceptors by producing opioid analogs and by interfering with sensory nerve function. Other organisms manipulate neuroimmune pain by increasing it. Hosts may gain protection from interference by adjusting pain sensitivity. Nociceptive sensitization follows expectations of signal detection theory and the smoke detector principle, allowing pain to be more easily triggered in response to microbial threats and damage. However, pain sensitization at the spinal level and cortical responses to pain are themselves the target of manipulation by parasites and other organisms. Here we review examples of parasites, bacteria, and other medically important organisms that interfere with pain signaling and describe their implications for public health, infectious disease, and the treatment of pain.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies highlight extensive crosstalk that exists between sensory neurons responsible for pain and the immune system. Cutaneous pain neurons detect harmful microbes, recruit immune cells, and produce anticipatory immunity in nearby tissues. These complementary systems generally protect hosts from infections. At the same time, neuroimmune pain is vulnerable to manipulation. Some pathogens evade immunity activated by nociceptors by producing opioid analogs and by interfering with sensory nerve function. Other organisms manipulate neuroimmune pain by increasing it. Hosts may gain protection from interference by adjusting pain sensitivity. Nociceptive sensitization follows expectations of signal detection theory and the smoke detector principle, allowing pain to be more easily triggered in response to microbial threats and damage. However, pain sensitization at the spinal level and cortical responses to pain are themselves the target of manipulation by parasites and other organisms. Here we review examples of parasites, bacteria, and other medically important organisms that interfere with pain signaling and describe their implications for public health, infectious disease, and the treatment of pain.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信