Amanda Triplett, Andrew Bennett, Laura E. Condon, Peter Melchior, Reed M. Maxwell
{"title":"A Deep-Learning Based Parameter Inversion Framework for Large-Scale Groundwater Models","authors":"Amanda Triplett, Andrew Bennett, Laura E. Condon, Peter Melchior, Reed M. Maxwell","doi":"10.1029/2024GL114285","DOIUrl":null,"url":null,"abstract":"<p>Hydrogeologic models generally require gridded subsurface properties, however these inputs are often difficult to obtain and highly uncertain. Parametrizing computationally expensive models where extensive calibration is computationally infeasible is a long standing challenge in hydrogeology. Here we present a machine learning framework to address this challenge. We train an inversion model to learn the relationship between water table depth and hydraulic conductivity using a small number of physical simulations. For a 31M grid cell model of the US we demonstrate that the inversion model can produce a reliable K field using only 30 simulations for training. Furthermore, we show that the inversion model captures physically realistic relationships between variables, even for relationships that were not directly trained on. While there are still limitations for out of sample parameters, the general framework presented here provides a promising approach for parametrizing expensive models.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114285","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogeologic models generally require gridded subsurface properties, however these inputs are often difficult to obtain and highly uncertain. Parametrizing computationally expensive models where extensive calibration is computationally infeasible is a long standing challenge in hydrogeology. Here we present a machine learning framework to address this challenge. We train an inversion model to learn the relationship between water table depth and hydraulic conductivity using a small number of physical simulations. For a 31M grid cell model of the US we demonstrate that the inversion model can produce a reliable K field using only 30 simulations for training. Furthermore, we show that the inversion model captures physically realistic relationships between variables, even for relationships that were not directly trained on. While there are still limitations for out of sample parameters, the general framework presented here provides a promising approach for parametrizing expensive models.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.