Benjamin Otoo, Dante G. Calise, Sung Chul Park, Jin Woo Bok, Nancy P. Keller, Mira Syahfriena Amir Rawa
{"title":"ZfpA-Dependent Quorum Sensing Shifts in Morphology and Secondary Metabolism in Aspergillus flavus","authors":"Benjamin Otoo, Dante G. Calise, Sung Chul Park, Jin Woo Bok, Nancy P. Keller, Mira Syahfriena Amir Rawa","doi":"10.1111/1462-2920.70100","DOIUrl":null,"url":null,"abstract":"<p>Development of the fungal pathogen <i>Aspergillus flavus</i> involves the balance of asexual spores (conidia) and overwintering hardened hyphal masses (sclerotia). This balance is achieved by an oxylipin-based density-dependent mechanism regulating the switch from sclerotia to conidia as population density increases in <i>A. flavus</i>. Here, we show the transcription factor ZfpA, required for normal oxylipin synthesis, regulates the morphology switch. ZfpA overexpression (OE::<i>zfpA</i>) accelerates the shift leading to increased conidial production and reduced sclerotial production under conditions normally supporting sclerotia formation. In contrast, <i>zfpA</i> deletion (Δ<i>zfpA</i>) produces more sclerotia than wild-type control. These morphology changes are coupled with changes in tissue-specific secondary metabolites. Specifically, the production of four sclerotial metabolites (oxyasparasone A, hydroxyaflatrem, aflavinine, and kotanin) decreases in OE::<i>zfpA</i> whereas the hyphal metabolite aspergillic acid is upregulated in this mutant. Chemical profiling of OE::<i>zfpA</i> compared to a double mutant where the aspergillic acid non-ribosomal synthetase was deleted in the OE::<i>zfpA</i> background confirmed synthesis of known aspergillic acid pathway products as well as putative Val-derived pyrazinones involved in metal chelation. These findings offer valuable insights into the quorum sensing networks connecting fungal development and tissue-specific secondary metabolite production.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70100","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Development of the fungal pathogen Aspergillus flavus involves the balance of asexual spores (conidia) and overwintering hardened hyphal masses (sclerotia). This balance is achieved by an oxylipin-based density-dependent mechanism regulating the switch from sclerotia to conidia as population density increases in A. flavus. Here, we show the transcription factor ZfpA, required for normal oxylipin synthesis, regulates the morphology switch. ZfpA overexpression (OE::zfpA) accelerates the shift leading to increased conidial production and reduced sclerotial production under conditions normally supporting sclerotia formation. In contrast, zfpA deletion (ΔzfpA) produces more sclerotia than wild-type control. These morphology changes are coupled with changes in tissue-specific secondary metabolites. Specifically, the production of four sclerotial metabolites (oxyasparasone A, hydroxyaflatrem, aflavinine, and kotanin) decreases in OE::zfpA whereas the hyphal metabolite aspergillic acid is upregulated in this mutant. Chemical profiling of OE::zfpA compared to a double mutant where the aspergillic acid non-ribosomal synthetase was deleted in the OE::zfpA background confirmed synthesis of known aspergillic acid pathway products as well as putative Val-derived pyrazinones involved in metal chelation. These findings offer valuable insights into the quorum sensing networks connecting fungal development and tissue-specific secondary metabolite production.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens