ETS-NOCV Analysis of σ-Donation and π-Backdonation in Complexes of Boron Based Lewis Acids with N2, CO and NH3

IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Tore Brinck, Filip Sagan, Mariusz Mitoraj
{"title":"ETS-NOCV Analysis of σ-Donation and π-Backdonation in Complexes of Boron Based Lewis Acids with N2, CO and NH3","authors":"Tore Brinck,&nbsp;Filip Sagan,&nbsp;Mariusz Mitoraj","doi":"10.1002/ejic.202400845","DOIUrl":null,"url":null,"abstract":"<p>Lewis acids B(SiR<sub>3</sub>)<sub>3</sub> and B(GeR<sub>3</sub>)<sub>3</sub> form anomalously strong complexes with Lewis bases N<sub>2</sub> and CO. Intramolecular B−N/C bonds are generally in the range 1.45–1.50 Å and shorter than the sum of B and N/C covalent radii. Bonding analyses have shown that the strong bonds are a consequence of a novel σ-donation and π-backdonation mechanism, where electrons are donated into an empty <i>sp</i><sup><i>3</i></sup>-type orbital on B (LUMO) from the σ-orbitals of N<sub>2</sub>/CO and electrons are backdonated from the B−Si/Ge σ-bonds into the π-type orbitals of N<sub>2</sub>/CO. Here we have analyzed the complexes between Lewis acids B(SiH<sub>3</sub>)<sub>3</sub> and B(CF<sub>3</sub>)<sub>3</sub> and Lewis bases N<sub>2</sub>, CO and NH<sub>3</sub> using the <i>extended transition state – natural orbitals for chemical valence</i> (ETS-NOCV) method. Both σ-donation and π-backdonation are present in all complexes, and deformation densities due to the two mechanisms, i. e. NOCV pair densities, are surprisingly similar in character. Energy stabilization due to π-backdonation is much larger for the complexes of B(SiH<sub>3</sub>)<sub>3</sub> with N<sub>2</sub> and CO, and σ-donation stabilization is also enhanced compared to the corresponding complexes of B(CF<sub>3</sub>)<sub>3</sub>. Differential electrostatic potential indicate that the enhanced stabilization of the B(SiH<sub>3</sub>)<sub>3</sub> complexes is largely an effect of reduced charge separation due to the balance between σ-donation and π-backdonation.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202400845","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400845","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Lewis acids B(SiR3)3 and B(GeR3)3 form anomalously strong complexes with Lewis bases N2 and CO. Intramolecular B−N/C bonds are generally in the range 1.45–1.50 Å and shorter than the sum of B and N/C covalent radii. Bonding analyses have shown that the strong bonds are a consequence of a novel σ-donation and π-backdonation mechanism, where electrons are donated into an empty sp3-type orbital on B (LUMO) from the σ-orbitals of N2/CO and electrons are backdonated from the B−Si/Ge σ-bonds into the π-type orbitals of N2/CO. Here we have analyzed the complexes between Lewis acids B(SiH3)3 and B(CF3)3 and Lewis bases N2, CO and NH3 using the extended transition state – natural orbitals for chemical valence (ETS-NOCV) method. Both σ-donation and π-backdonation are present in all complexes, and deformation densities due to the two mechanisms, i. e. NOCV pair densities, are surprisingly similar in character. Energy stabilization due to π-backdonation is much larger for the complexes of B(SiH3)3 with N2 and CO, and σ-donation stabilization is also enhanced compared to the corresponding complexes of B(CF3)3. Differential electrostatic potential indicate that the enhanced stabilization of the B(SiH3)3 complexes is largely an effect of reduced charge separation due to the balance between σ-donation and π-backdonation.

Abstract Image

硼基路易斯酸与N2、CO和NH3配合物中σ-给体和π-反给体的ETS-NOCV分析
Lewis酸B(SiR3)3和B(GeR3)3与Lewis碱N2和CO形成异常强的配合物。分子内B - N/C键一般在1.45-1.50 Å范围内,小于B和N/C共价半径之和。成键分析表明,强键的形成是由一种新的σ-给价和π-反给价机制引起的,即N2/CO的σ-给价轨道上的电子给到B (LUMO)上的sp3型空轨道上,而B - Si/Ge的σ-给价轨道上的电子回给到N2/CO的π型轨道上。本文采用扩展过渡态-化学价自然轨道(ETS-NOCV)方法分析了Lewis酸B(SiH3)3和B(CF3)3与Lewis碱N2、CO和NH3之间的配合物。在所有配合物中均存在σ-赋形和π-反赋形。NOCV对密度,在特征上惊人的相似。与B(CF3)3配合物相比,B(SiH3)3与N2和CO配合物的π-反给能稳定性更大,σ给能稳定性也更强。静电电位的差异表明,B(SiH3)3配合物的稳定性增强主要是由于σ-赋形和π-反赋形之间的平衡而减少了电荷分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Inorganic Chemistry
European Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
4.30
自引率
4.30%
发文量
419
审稿时长
1.3 months
期刊介绍: The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry: Chemische Berichte Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信