Xiaoying Ran, Zhen Yu, Ruirong Niu, Yi Chang, Feng Wang
{"title":"A Floral-Like Fractal Ultra-Wideband Flexible Antenna for Wearable Device","authors":"Xiaoying Ran, Zhen Yu, Ruirong Niu, Yi Chang, Feng Wang","doi":"10.1155/mmce/8057773","DOIUrl":null,"url":null,"abstract":"<p>In the context of the rapid development of wireless body area network and ultra-wideband technology, this design puts forward a new structure of ultra-wideband flexible antenna. Its operating band is 1.22–8.82 GHz, with a maximum gain of 4.8 dBi. The antenna adopts a polyimide material with a relative dielectric constant of 3.5 and a thickness of 0.2 mm as the dielectric substrate. The overall size of the antenna is very small, measuring 0.15<i>λ</i> × 0.21<i>λ</i> at the lowest frequency of 1.22 GHz. In this paper, the influence of some antenna parameters on its performance, the influence of different bending conditions on the performance of the antenna, and the specific absorptivity of the antenna to the human body are discussed. In order to further explore the performance stability of the antenna, the performance of the antenna under right-angle bending is simulated and tested in this paper. Simulation results show that the antenna still has two frequency bands 1.22–2.58 GHz and 3.35–9.53 GHz under right-angle bending, which can still cover most of the commercial communication bands, and the measured results are in good agreement with the simulation results. Therefore, the antenna has strong adaptability and damage resistance and can be used in wearable equipment for military or emergency rescue.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/8057773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/8057773","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of the rapid development of wireless body area network and ultra-wideband technology, this design puts forward a new structure of ultra-wideband flexible antenna. Its operating band is 1.22–8.82 GHz, with a maximum gain of 4.8 dBi. The antenna adopts a polyimide material with a relative dielectric constant of 3.5 and a thickness of 0.2 mm as the dielectric substrate. The overall size of the antenna is very small, measuring 0.15λ × 0.21λ at the lowest frequency of 1.22 GHz. In this paper, the influence of some antenna parameters on its performance, the influence of different bending conditions on the performance of the antenna, and the specific absorptivity of the antenna to the human body are discussed. In order to further explore the performance stability of the antenna, the performance of the antenna under right-angle bending is simulated and tested in this paper. Simulation results show that the antenna still has two frequency bands 1.22–2.58 GHz and 3.35–9.53 GHz under right-angle bending, which can still cover most of the commercial communication bands, and the measured results are in good agreement with the simulation results. Therefore, the antenna has strong adaptability and damage resistance and can be used in wearable equipment for military or emergency rescue.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.