Zhuo-Jun Duan, Hang Xia, Han-Ze Li, Gong-Lei Shao, Yi-Zhang Ren, Xuan Tang, Qiu-Nan Liu, Jin-Hua Hong, Sheng Dai, Yung-Chang Lin, Kazu Suenaga, Yong-Min He, Song Liu
{"title":"Locally-doped MoS2 monolayer with in-plane bifunctional heterostructure toward overall water splitting","authors":"Zhuo-Jun Duan, Hang Xia, Han-Ze Li, Gong-Lei Shao, Yi-Zhang Ren, Xuan Tang, Qiu-Nan Liu, Jin-Hua Hong, Sheng Dai, Yung-Chang Lin, Kazu Suenaga, Yong-Min He, Song Liu","doi":"10.1007/s12598-024-03201-x","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring earth-abundant, highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting. However, due to their distinct free energies and conducting behaviors (electron/hole), balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts. Here, we report a locally-doped MoS<sub>2</sub> monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting. In this heterostructure, the core region contains Mo/S vacancies, while the ring region was doped by Fe atoms (in two substitution configurations: 1Fe<sub>Mo</sub> and 3Fe<sub>Mo</sub>-V<sub>S</sub> clusters) with a p-type conductive characteristic. Our micro-cell measurements, combined with density functional theory (DFT) calculations, reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction (HER) activity while the Fe-doped ring gives an excellent oxygen evolution reaction (OER) activity, thus forming an in-plane bifunctional electrocatalyst. Finally, as a proof-of-concept for overall water splitting, we constructed a full-cell configuration based on a locally-doped MoS<sub>2</sub> monolayer, which achieved a cell voltage of 1.87 V at 10 mA·cm<sup>−2</sup>, demonstrating outstanding performance in strong acid electrolytes. Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level, paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 5","pages":"3130 - 3140"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03201-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring earth-abundant, highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting. However, due to their distinct free energies and conducting behaviors (electron/hole), balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts. Here, we report a locally-doped MoS2 monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting. In this heterostructure, the core region contains Mo/S vacancies, while the ring region was doped by Fe atoms (in two substitution configurations: 1FeMo and 3FeMo-VS clusters) with a p-type conductive characteristic. Our micro-cell measurements, combined with density functional theory (DFT) calculations, reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction (HER) activity while the Fe-doped ring gives an excellent oxygen evolution reaction (OER) activity, thus forming an in-plane bifunctional electrocatalyst. Finally, as a proof-of-concept for overall water splitting, we constructed a full-cell configuration based on a locally-doped MoS2 monolayer, which achieved a cell voltage of 1.87 V at 10 mA·cm−2, demonstrating outstanding performance in strong acid electrolytes. Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level, paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.