Enhanced energy-storage performances and thermal stability in BNT–LST-based ceramics by tuning domain configuration and bandgap

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fang-Fang Zeng, Qian-Si Zhang, Shi-Dong Zhang, Qi Sun, Hui-Tao Guo, Qing-Quan Xiao, Quan Xie, Li Zhang, Gui-Fen Fan, Yun-Peng Qu, Jia Liu, Qi-Bin Liu, Yun-Lei Zhou
{"title":"Enhanced energy-storage performances and thermal stability in BNT–LST-based ceramics by tuning domain configuration and bandgap","authors":"Fang-Fang Zeng,&nbsp;Qian-Si Zhang,&nbsp;Shi-Dong Zhang,&nbsp;Qi Sun,&nbsp;Hui-Tao Guo,&nbsp;Qing-Quan Xiao,&nbsp;Quan Xie,&nbsp;Li Zhang,&nbsp;Gui-Fen Fan,&nbsp;Yun-Peng Qu,&nbsp;Jia Liu,&nbsp;Qi-Bin Liu,&nbsp;Yun-Lei Zhou","doi":"10.1007/s12598-024-03051-7","DOIUrl":null,"url":null,"abstract":"<div><p>Low energy-storage density and inferior thermal stability are a long-term obstacle to the advancement of pulse power devices. Herein, these concerns are addressed by improving bandgap and fabricating polar nanoregions, and the superior high efficiency of ~ 86.7%, excellent thermal stability of ~ 2% (31–160 °C) and energy density of ~ 6.8 J·cm<sup>–3</sup> are achieved in Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>–La<sub>0.1</sub>Sr<sub>0.8</sub>TiO<sub>3-</sub><sub><i>δ</i></sub>–NaNbO<sub>3</sub> ceramics. The high breakdown strength (460 kV·cm<sup>–1</sup>) is ascribed to the broadened bandgap and refined grain. Slim ferroelectric loops originate from the construction of polar nanoregions (PNRs) in a pseudocubic matrix, and transmission electron microscope and piezoelectric force microscope measurements reveal the occurrence of PNRs. The phase-field stimulation and UV–Vis spectrophotometer measurement reveal that the increased grain boundary density and bandgap are beneficial for promoting breakdown strength. The strategy provides an efficient path to prepare Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>La<sub>0.1</sub>Sr<sub>0.8</sub>TiO<sub>3-</sub><sub><i>δ</i></sub>-based ceramics with superior efficiency, high energy density and outstanding thermal stability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 5","pages":"3313 - 3323"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03051-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low energy-storage density and inferior thermal stability are a long-term obstacle to the advancement of pulse power devices. Herein, these concerns are addressed by improving bandgap and fabricating polar nanoregions, and the superior high efficiency of ~ 86.7%, excellent thermal stability of ~ 2% (31–160 °C) and energy density of ~ 6.8 J·cm–3 are achieved in Bi0.5Na0.5TiO3–La0.1Sr0.8TiO3-δ–NaNbO3 ceramics. The high breakdown strength (460 kV·cm–1) is ascribed to the broadened bandgap and refined grain. Slim ferroelectric loops originate from the construction of polar nanoregions (PNRs) in a pseudocubic matrix, and transmission electron microscope and piezoelectric force microscope measurements reveal the occurrence of PNRs. The phase-field stimulation and UV–Vis spectrophotometer measurement reveal that the increased grain boundary density and bandgap are beneficial for promoting breakdown strength. The strategy provides an efficient path to prepare Bi0.5Na0.5TiO3La0.1Sr0.8TiO3-δ-based ceramics with superior efficiency, high energy density and outstanding thermal stability.

Graphical abstract

通过调整畴结构和带隙,增强了bnt - lst基陶瓷的储能性能和热稳定性
储能密度低、热稳定性差是制约脉冲功率器件发展的长期障碍。本文通过改进带隙和制备极性纳米区来解决这些问题,在Bi0.5Na0.5TiO3-La0.1Sr0.8TiO3 -δ-NaNbO3陶瓷中获得了~ 86.7%的高效率、~ 2%(31-160°C)的优异热稳定性和~ 6.8 J·cm-3的能量密度。高击穿强度(460 kV·cm-1)是由于带隙加宽和晶粒细化所致。超薄铁电环起源于伪矩阵中极性纳米区(PNRs)的构建,透射电子显微镜和压电力显微镜的测量揭示了PNRs的存在。相场刺激和紫外可见分光光度计测量结果表明,晶界密度和带隙的增加有利于提高击穿强度。该策略为制备Bi0.5Na0.5TiO3La0.1Sr0.8TiO3-δ基陶瓷提供了一条高效、高能量密度和优异热稳定性的有效途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信