Antimony nanoparticles encapsulated in three-dimensional porous carbon frameworks for high-performance rechargeable batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
An-Qi Chen, Si-Guang Guo, Yu Liu, Ling Long, Zhuo Li, Biao Gao, Paul K. Chu, Kai-Fu Huo
{"title":"Antimony nanoparticles encapsulated in three-dimensional porous carbon frameworks for high-performance rechargeable batteries","authors":"An-Qi Chen,&nbsp;Si-Guang Guo,&nbsp;Yu Liu,&nbsp;Ling Long,&nbsp;Zhuo Li,&nbsp;Biao Gao,&nbsp;Paul K. Chu,&nbsp;Kai-Fu Huo","doi":"10.1007/s12598-024-03077-x","DOIUrl":null,"url":null,"abstract":"<div><p>Antimony (Sb) is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity, excellent conductivity and appropriate reaction potential. However, Sb-based anodes suffer from severe volume expansion of &gt; 135% during the lithiation–delithiation process. Hence, we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction (MR). The porous carbon provides buffer spaces to accommodate the volume expansion of Sb. Meanwhile, the three-dimensional (3D) interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces (SEIs). Consequently, the 3D Sb@C composite displays remarkable electrochemical performance, including a high average Coulombic efficiency (CE) of &gt; 99%, high initial capability of 989 mAh·g<sup>−1</sup>, excellent cycling stability for over 1000 cycles at a high current density of 5 A·g<sup>−1</sup>. Furthermore, employing a similar approach, this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li<sup>+</sup>. This work aims to advance practical applications for Sb-based anodes in next-generation batteries.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 5","pages":"3026 - 3036"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03077-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony (Sb) is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity, excellent conductivity and appropriate reaction potential. However, Sb-based anodes suffer from severe volume expansion of > 135% during the lithiation–delithiation process. Hence, we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction (MR). The porous carbon provides buffer spaces to accommodate the volume expansion of Sb. Meanwhile, the three-dimensional (3D) interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces (SEIs). Consequently, the 3D Sb@C composite displays remarkable electrochemical performance, including a high average Coulombic efficiency (CE) of > 99%, high initial capability of 989 mAh·g−1, excellent cycling stability for over 1000 cycles at a high current density of 5 A·g−1. Furthermore, employing a similar approach, this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+. This work aims to advance practical applications for Sb-based anodes in next-generation batteries.

Graphical abstract

用于高性能可充电电池的三维多孔碳框架中封装的锑纳米颗粒
锑(Sb)由于具有较高的理论比容量、优异的导电性和适宜的反应电位,被认为是下一代可充电电池负极材料的潜在候选材料。然而,在锂化-去氧过程中,sb基阳极的体积膨胀高达135%。因此,我们构建了一种新型Sb@C复合材料,通过一步镁热还原(MR)将Sb纳米颗粒封装到高导电性的三维多孔碳框架中。多孔碳为Sb的体积膨胀提供了缓冲空间。同时,三维(3D)互连的碳框架缩短了离子/电子传递途径,抑制了不稳定固体-电解质界面(SEIs)的过度生长。因此,3D Sb@C复合材料表现出优异的电化学性能,包括高达99%的平均库仑效率(CE), 989 mAh·g−1的高初始容量,以及在5 a·g−1的高电流密度下超过1000次循环的优异循环稳定性。此外,采用类似的方法,这种3D Sb@C设计范式有望在Li+以外的快速充电和超长寿命电池系统中得到更广泛的应用。这项工作旨在推进sb基阳极在下一代电池中的实际应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信