A review on the low temperature water-gas-shift reaction: reaction mechanism, catalyst design, and novel process development

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jun Li, Xiaonan Wang, Sen Yao, Xiao Zhang
{"title":"A review on the low temperature water-gas-shift reaction: reaction mechanism, catalyst design, and novel process development","authors":"Jun Li,&nbsp;Xiaonan Wang,&nbsp;Sen Yao,&nbsp;Xiao Zhang","doi":"10.1007/s11705-025-2547-0","DOIUrl":null,"url":null,"abstract":"<div><p>The water-gas shift (WGS) reaction plays a pivotal role in various industrial processes, particularly in hydrogen production and carbon monoxide removal. As global energy demands rise and environmental concerns intensify, the development of efficient and sustainable catalysts for the low-temperature WGS (LT-WGS) reaction has gained significant attention. This review focuses on recent advancements in water-gas-shift catalyst design for low-temperature conditions and emerging renewable energy-driven catalytic processes, such as photocatalysis, electrocatalysis, and plasma catalysis for the WGS reaction, which are less commonly explored in existing reviews. We systematically analyze mechanisms studies of LT-WGS, rational catalyst design strategies, and recent frontier advances in the development of highly efficient catalysts. Furthermore, this review provides actionable insights for refining catalyst architectures, enhancing operational efficiency, elucidating reaction pathways, and pioneering hybrid technologies, all contributing to further advancements in this field.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2547-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The water-gas shift (WGS) reaction plays a pivotal role in various industrial processes, particularly in hydrogen production and carbon monoxide removal. As global energy demands rise and environmental concerns intensify, the development of efficient and sustainable catalysts for the low-temperature WGS (LT-WGS) reaction has gained significant attention. This review focuses on recent advancements in water-gas-shift catalyst design for low-temperature conditions and emerging renewable energy-driven catalytic processes, such as photocatalysis, electrocatalysis, and plasma catalysis for the WGS reaction, which are less commonly explored in existing reviews. We systematically analyze mechanisms studies of LT-WGS, rational catalyst design strategies, and recent frontier advances in the development of highly efficient catalysts. Furthermore, this review provides actionable insights for refining catalyst architectures, enhancing operational efficiency, elucidating reaction pathways, and pioneering hybrid technologies, all contributing to further advancements in this field.

低温水气变换反应综述:反应机理、催化剂设计和新型工艺开发
水气转换(WGS)反应在各种工业过程中起着关键作用,特别是在制氢和一氧化碳去除中。随着全球能源需求的增加和环境问题的加剧,开发高效、可持续的低温WGS (LT-WGS)反应催化剂受到了人们的广泛关注。本文重点介绍了低温条件下水气转换催化剂设计的最新进展和新兴的可再生能源驱动的催化过程,如光催化、电催化和等离子体催化,这些在现有的综述中很少被探讨。我们系统地分析了LT-WGS的机理研究、合理的催化剂设计策略以及高效催化剂的最新研究进展。此外,本综述还为改进催化剂结构、提高操作效率、阐明反应途径和开拓混合技术提供了可行的见解,所有这些都有助于该领域的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信