Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fei-Fei Hong, Xin Zhou, Hao Liu, Gui-Lin Feng, Xiao-Hong Liu, Heng Zhang, Wei-Feng Fan, Bin Zhang, Mei-Hua Zuo, Wang-Yan Xing, Ping Zhang, Wei Xiang
{"title":"Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries","authors":"Fei-Fei Hong,&nbsp;Xin Zhou,&nbsp;Hao Liu,&nbsp;Gui-Lin Feng,&nbsp;Xiao-Hong Liu,&nbsp;Heng Zhang,&nbsp;Wei-Feng Fan,&nbsp;Bin Zhang,&nbsp;Mei-Hua Zuo,&nbsp;Wang-Yan Xing,&nbsp;Ping Zhang,&nbsp;Wei Xiang","doi":"10.1007/s12598-024-03196-5","DOIUrl":null,"url":null,"abstract":"<div><p>Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries. However, irreversible phase transitions cause structural distortion and cation rearrangement, leading to sluggish Na<sup>+</sup> dynamics and rapid capacity decay. In this study, we propose a medium-entropy cathode by simultaneously introducing Fe, Mg, and Li dopants into a typical P2-type Na<sub>0.75</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub> cathode. The modified Na<sub>0.75</sub>Ni<sub>0.2125</sub>Mn<sub>0.6375</sub>Fe<sub>0.05</sub>Mg<sub>0.05</sub>Li<sub>0.05</sub>O<sub>2</sub> cathode predominantly exhibits a main P2 phase (93.5%) with a minor O3 phase (6.5%). Through spectroscopy techniques and electrochemical investigations, we elucidate the redox mechanisms of Ni<sup>2+/3+/4+</sup>, Mn<sup>3+/4+</sup>, Fe<sup>3+/4+</sup>, and O<sup>2−</sup>/O<sub>2</sub><sup><i>n</i>−</sup> during charging/discharging. The medium-entropy doping mitigates the detrimental P2-O2 phase transition at high-voltage, replacing it with a moderate and reversible structural evolution (P2-OP4), thereby enhancing structural stability. Consequently, the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g<sup>−1</sup> at 10C, with a capacity retention of 99.0% after 200 cycles at 1C, 82.5% after 500 cycles at 5C, and 76.7% after 600 cycles at 10C. Furthermore, it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature (55 and 0 °C). This work offers solutions to critical challenges in sodium ion batteries cathode materials.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 5","pages":"2997 - 3007"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03196-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries. However, irreversible phase transitions cause structural distortion and cation rearrangement, leading to sluggish Na+ dynamics and rapid capacity decay. In this study, we propose a medium-entropy cathode by simultaneously introducing Fe, Mg, and Li dopants into a typical P2-type Na0.75Ni0.25Mn0.75O2 cathode. The modified Na0.75Ni0.2125Mn0.6375Fe0.05Mg0.05Li0.05O2 cathode predominantly exhibits a main P2 phase (93.5%) with a minor O3 phase (6.5%). Through spectroscopy techniques and electrochemical investigations, we elucidate the redox mechanisms of Ni2+/3+/4+, Mn3+/4+, Fe3+/4+, and O2−/O2n during charging/discharging. The medium-entropy doping mitigates the detrimental P2-O2 phase transition at high-voltage, replacing it with a moderate and reversible structural evolution (P2-OP4), thereby enhancing structural stability. Consequently, the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g−1 at 10C, with a capacity retention of 99.0% after 200 cycles at 1C, 82.5% after 500 cycles at 5C, and 76.7% after 600 cycles at 10C. Furthermore, it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature (55 and 0 °C). This work offers solutions to critical challenges in sodium ion batteries cathode materials.

Graphic abstract

高倍率钠离子电池层状氧化物中实现可逆P2-OP4相变的中熵配置
层状过渡金属氧化物已成为钠离子电池极具前景的正极材料。然而,不可逆相变引起结构畸变和阳离子重排,导致Na+动力学缓慢,容量衰减迅速。在本研究中,我们提出了一种中熵阴极,通过在典型的p2型Na0.75Ni0.25Mn0.75O2阴极中同时引入Fe、Mg和Li掺杂剂。改性后的Na0.75Ni0.2125Mn0.6375Fe0.05Mg0.05Li0.05O2阴极主要为P2相(93.5%)和少量O3相(6.5%)。通过光谱技术和电化学研究,我们阐明了Ni2+/3+/4+、Mn3+/4+、Fe3+/4+和O2−/O2n−在充放电过程中的氧化还原机理。中熵掺杂减轻了高压下有害的P2-O2相变,取而代之的是温和可逆的结构演变(P2-OP4),从而提高了结构的稳定性。结果表明,改性后的阴极在10C下的倍率容量为108.4 mAh·g−1,在1C下循环200次后容量保持率为99.0%,在5C下循环500次后容量保持率为82.5%,在10C下循环600次后容量保持率为76.7%。此外,在4.5 V的高截止电压和55°C和0°C的极端温度下,它也表现出优异的电化学性能。这项工作为钠离子电池正极材料的关键挑战提供了解决方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信