Fang-Min Tian, Xiao-Yan Chen, Jiu-Ju Feng, Liang Wu and Ai-Jun Wang
{"title":"FeCoMnMoNb with multi-atom active sites in N-doped porous carbon for synergistic catalytic removal of 4-nitrophenol from wastewater†","authors":"Fang-Min Tian, Xiao-Yan Chen, Jiu-Ju Feng, Liang Wu and Ai-Jun Wang","doi":"10.1039/D5NJ00771B","DOIUrl":null,"url":null,"abstract":"<p >It is a great challenge to achieve precise control over multi-atom active sites, especially in nanomaterials. This study presents the synthesis of well-dispersed FeCoMnMoNb multi-atom active sites incorporated in N-doped porous carbon (FeCoMnMoNb-NPC) by employing the space-confined pyrolysis approach, The morphology and structure were rigorously characterized in detail. The resulting FeCoMnMoNb-NPC demonstrated exceptional activity and reusability in catalytic hydrogenation of 4-nitrophenol, and provided further insights into the underlying mechanism. The hierarchically porous carbon provided a three-dimensional catalytic surface and exposed a lot of active sites. In parallel, the synergistic effect of the multiple metal sites played an important role in the superior catalytic performance. This work offers a promising direction in the synthesis of advanced multi-atom catalysts for environmental remediation of organic pollutants.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 17","pages":" 7227-7236"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00771b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is a great challenge to achieve precise control over multi-atom active sites, especially in nanomaterials. This study presents the synthesis of well-dispersed FeCoMnMoNb multi-atom active sites incorporated in N-doped porous carbon (FeCoMnMoNb-NPC) by employing the space-confined pyrolysis approach, The morphology and structure were rigorously characterized in detail. The resulting FeCoMnMoNb-NPC demonstrated exceptional activity and reusability in catalytic hydrogenation of 4-nitrophenol, and provided further insights into the underlying mechanism. The hierarchically porous carbon provided a three-dimensional catalytic surface and exposed a lot of active sites. In parallel, the synergistic effect of the multiple metal sites played an important role in the superior catalytic performance. This work offers a promising direction in the synthesis of advanced multi-atom catalysts for environmental remediation of organic pollutants.